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Abstract: Signals sparse in a transformation domain can be recovered from a reduced
set of randomly positioned samples by using compressive sensing algorithms. Simple re-
construction algorithms are presented in the first part of the paper. Themissing samples
manifest themselves as a noise in this reconstruction. Once the reconstruction conditions
for a sparse signal are met and the reconstruction is achieved, the noise due to missing
samples does not influence the results in a direct way. It influences the possibility to
recover a signal only. Additive input noise will remain in the resulting reconstructed
signal. The accuracy of the recovery results is related to the additive input noise. Simple
derivation of this relation is presented. If a reconstruction algorithm for a sparse signal
is used in the reconstruction of a nonsparse signal then the noise due to missing samples
will remain and behave as an additive input noise. An exact relation for the mean square
error of this error is derived for the partial DFTmatrix case in this paper and presented
in form of a theorem. It takes into account very important fact that if all samples are
available then the error will be zero, for both sparse and nonsparse recovered signals.
Theory is illustrated and checked on statistical examples.

1. Introduction

A signal can be transformed from one domain into another in various ways. Some signals
that cover the whole considered interval in one domain (where signals are dense in that do-
main) could be located withinmuch smaller regions in another domain. We say that signals are
sparse in a transformation domain if the number of nonzero coefficients is much smaller that
the total number of signal samples. For example, a sum of discrete-time complex sinusoidal
signals, with a number of components being much lower than the number of signal samples
in the time domain, is a sparse signal in the discrete Fourier transform (DFT) domain.
Sparse signals could be reconstructed from much fewer samples than the sampling theorem
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requires. Compressive sensing is a field dealing with the problem of signal recovery from a
reduced set of samples [1]-[19]. As a study case, in this paper we will consider signals that are
sparse in the Fourier transform domain. Signal sparsity in the discrete Fourier domain imposes
some restrictions on the signal. Reducing the number of samples in the analysis manifests as
a noise, whose properties are studied in [12] and used in [20] to define a reconstruction algo-
rithm. The input noise influence is also an important topic in this analysis since the reduced
number of available samples could increase the sensitivity of the recovery results to this noise
[7, 20, 21]. Additive noise will remain in the resulting transform.
However, if a reconstruction algorithm for a sparse signal is used in the reconstruction of

nonsparse signal then the noise, due to missing samples, will remain and behave as an additive
input noise. A relation for the mean square error of this error is derived for the partial DFT
matrix case. It takes into account very important fact that if all samples are available then the
error will be zero, for both sparse and nonsparse recovered signals. Theory is illustrated and
checked on statistical examples.
The paper is organised as follows: after the introduction part in Section 1, the definition

of sparsity is presented in Section 2. In Section 3, the reconstruction algorithm is presented
for both one step reconstruction and the iterative way. Also in Section 3, the analysis of the
influence of additive noise will be expanded. The reconstruction of nonsparse signals with
additive noise is shown in Section 4. In the appendix the conditions inwhich the reconstruction
of sparse signals is possible in general are presented.

2. Sparsity and Reduced Set of Samples/Observations

Consider a signal x(n) and its transformation domain coefficients X(k),

x(n) =

N−1∑
k=0

X(k)ψk(n)

or
x= ΨX,

where Ψ is the transformation matrix with elements ψk(n), x is the signal vector column, and
X is the transformation coefficients vector column. For the DFT ψk(n) = exp( j2πnk)/N. A
signal is sparse in the transformation domain if the number of nonzero transform coefficients
K is much lower than the number of the original signal samples N, Fig. 1, i.e., if

X(k) = 0

for
k < {k1, k2, ..., kK} = K,

The number of nonzero samples is

‖X‖0 = card {X} = K,

where

‖X‖0 =

N−1∑
k=0

|X(k)|0
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and card {X} is the notation for the number of nonzero transformation coefficients inX. Count-
ing the nonzero coefficients in a signal representation can be achieved by using the so called
`0-norm denoted by ‖X‖0. This form is referred to as the `0-norm (norm-zero) although it
does not satisfy norm properties. By definition |X(k)|0 = 0 for |X(k)| = 0 and |X(k)|0 = 1 for
|X(k)| , 0.
A signal x(n), whose transformation coefficients are X(k), is sparse in this transformation

domain if
card {X} = K � N.

For linear signal transforms the signal can be written as a linear combination of the sparse
domain coefficients X(k)

x(n) =
∑

k∈{k1,k2,...,kK }

X(k)ψk(n). (1)

A signal sample can be considered as a linear combination (measurement) of values X(k).
Assume that samples of x(n) are available only at a reduced set of random positions

ni ∈M ={n1, n2, ..., nM}⊂ N = {0, 1, 2, 3, ...,N − 1}.

Here N = {0, 1, 2, 3, ...,N − 1} is the set of all samples of a signal x(n) and M ={n1, n2, ..., nM}

is its random subset with M elements, M ≤ N. The available signal values are denoted by
vector y, Fig.1,

y = [x(n1), x(n2), ..., x(nM)]T .

The available samples (measurements of a linear combination of X(k)) defined by (1), for
ni ∈M ={n1, n2, ..., nM}, can be written as a system of M equations

x(n1)
x(n2)
...

x(nM)

 =


ψ0(n1) ψ1(n1) ψN−1(n1)
ψ0(n2) ψ1(n2) ψN−1(n2)
... ... ...

ψ0(nM) ψ1(nM) ψN−1(nM)




X(0)
X(0)
...

X(N − 1)


or

y = AX

where A is the M × N matrix of measurements/observations/available signal samples.
The fact that the signal is sparse with X(k) = 0 for k < {k1, k2, ..., kK} = K is not included

in the measurement matrix A since the positions of the nonzero values are unknown. If the
knowledge that X(k) = 0 for k < {k1, k2, ..., kK} = K were included then a reduced observation
matrix would be obtained as

x(n1)
x(n2)
...

x(nM)

 =


ψk1 (n1) ψk2 (n1) ψkK (n1)
ψk1 (n2) ψk2 (n2) ψkK (n2)
... ... ...

ψk1 (nM) ψk2 (nM) ψkK (nM)




X(k1)
X(k2)
...

X(kK)


or

y = AKXK .
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Fig. 1: Signal x(n) and available samples y(n).

Matrix AK would be formed if we knew the positions of nonzero samples k ∈ {k1, k2, ..., kK} =

K. It would follow from the measurement matrix A by omitting the columns corresponding
to the zero-valued coefficients X(k).
Assuming that there are K nonzero coefficients X(k), out of the total number of N values,

the total number of possible different matrices AK is equal to the number of combinations
with K out of N. It is equal to

(
N
K

)
.

3. Signal Reconstruction

Although the `0-norm cannot be used in the direct minimization, the algorithms based on
the assumption that some coefficients X(k) are equal to zero, and the minimization of the
number of remaining nonzero coefficients that can reconstruct sparse signal, may efficiently
be used.

A. Direct Combinatorial Search

The reconstruction process can be formulated as finding the positions and the values of K
nonzero coefficients X(k) of a sparse signal (or all signal x(n) values) using a reduced set of
signal values x(ni),

ni ∈M = {n1, n2, ..., nM} ⊂ {0, 1, 2, ...,N − 1}

such that
min ‖X‖0 subject to y = AX
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where ‖X‖0 = card{X} = K. Consider a discrete-time signal x(n). Signal is sparse in a
transformation domain defined by the basis functions set ψk(n), k = 0, 1, ...,N−1. The number
of nonzero transform coefficients K is much lower than the number of the original signal
samples N, i.e., X(k) = 0 for

k < {k1, k2, ..., kK} = K,

K � N. A signal
x(n) =

∑
k∈{k1,k2,...,kK }

X(k)ψk(n). (2)

of sparsity K can be reconstructed from M samples, where M ≤ N. In the case of signal
x(n) which is sparse in the transformation domain there are K nonzero unknown values X(k1),
X(k2),...,X(kK). Other transform coefficients X(k), for k < {k1, k2, ..., kK} = K, are zero-valued.
Just for the beginning assume that the transformation coefficient positions {k1, k2, ..., kK}

are known. Then the minimal number of equations to find the unknown coefficients (and to
calculate signal x(n) for any n) is K. The equations are written for at least K time instants ni,
i = 1, 2, ...,M ≥ K, where the signal is available/measured,∑

k∈K

X(k)ψk(ni) = x(ni), for i = 1, 2, ...,M ≥ K. (3)

In a matrix form this system of equations is

AKXK= y, (4)

where XK is the vector of unknown nonzero coefficients values (at the known positions) and
y is the vector of available signal samples,

XK = [X(k1) X(k2) ... X(kK)]T (5)
y = [x(n1) x(n2) ... x(nM)]T

AK =


ψk1 (n1) ψk2 (n1) ... ψkK (n1)
ψk1 (n2) ψk2 (n2) ... ψkK (n2)
... ... ... ....

ψk1 (nK) ψk2 (nK) ... ψkK (nK)

 . (6)

Matrix AK is the measurements matrix A with the columns corresponding to the zero-valued
transform coefficients k < {k1, k2, ..., kK} being excluded. For a given set {k1, k2, ..., kK} = K
the coefficients reconstruction condition can be easily formulated as the condition that system
(4) has a (unique) solution, i.e., that there are K independent equations,

rank (AK) = K.

Note that this condition does not guarantee that another set {k1, k2, ..., kK} = K can also have a
(unique) solution, for the same set of available samples. It requires rank (A2K) = 2K for any
submatrix A2K of the measurements matrix A.
System (3) is used with K � M ≤ N. Its solution, in the mean squared sense, follows from

the minimization of the difference of the available signal values and the values produced by
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inverse transform of the reconstructed coefficients, minX(k)

{
e2

}
where

e2 =
∑
n∈M

∣∣∣∣∣∣∣y(n) −
∑
k∈K

X(k)ψk(n)

∣∣∣∣∣∣∣
2

=

=
(
y − AKXK

)H (
y − AKXK

)
= ‖y‖22 − 2XH

K AH
K y + XH

K AH
K AKXK (7)

or
min

{(
y − AKXK

)H (
y − AKXK

)}
where exponent H denotes the Hermitian conjugate. The derivative of e2 over a specific co-
efficient X∗(p), p ∈ K, is

∂e2

∂X∗(p)
= 2

∑
n∈M

y(n) −
∑
k∈K

X(k)ψk(n)

ψ∗p(n).

The minimum of quadratic form error is reached for ∂e2/∂X∗(p) = 0 when∑
n∈M

ψ∗p(n)y(n) =
∑
n∈M

∑
k∈K

ψk(n)ψ∗p(n)X(k)

for p ∈ K.

In matrix form this system of equations reads

AH
K y = AH

K AKXK .

Its solution is
XK=

(
AH

K AK

)−1
AH

K y. (8)

It can be obtained by a symbolic vector derivation of (7) as

∂e2

∂XH
K

= −2AH
K y + 2AH

K AKXK = 0.

If we do not know the positions of the nonzero values X(k) for k ∈ {k1, k2, ..., kK} = K then
all possible combinations of {k1, k2, ..., kK} ⊂ N should be tested. There are

(
N
K

)
of them. It

is not a computationally feasible problem. Thus we must try to find a method to estimate {k1,
k2, ..., kK} in order to recover values of X(k).

B. Estimation of Unknown Positions

Solution of the minimization problem, assuming that the positions of the nonzero signal
coefficients in the sparse domain are known, is presented in the previous subsection. The next
step is to estimate the coefficient positions, using the available samples. A simple way is to
try to estimate the positions based on signal samples that are available, ignoring unavailable
samples. This kind of transform estimate is

X̂(k) =
∑
n∈M

x(n)ϕk(n), (9)



L. Stanković, I. Stanković: Reconstruction of Sparse and Nonsparse Signals... 153

where for the DFT ϕk(n) = exp(− j2πnk/N) and n ∈ M = {n1, n2, ..., nM}. Since ϕk(n) =

Nψ∗k(n) this relation can be written as

X̂ = NAHy

where A is the measurement matrix. With K � M � N the coefficients X̂(k), calculated
with M samples, are random variables. Note that using (9) in calculation is the same as
assuming that the values of unavailable samples x(n), n < M, is zero. This kind of calculation
corresponds to the result that would be achieved for the signal transform if `2-norm is used in
minimization.
Algorithm
A simple and computationally efficient algorithm, for signal recovery, can now be imple-

mented as follows:
(i) Calculate the initial transform estimate X̂(k) by using the available/remaining signal val-

ues

X̂(k) =
∑
n∈M

x(n)ϕk(n) (10)

or X̂=NAHy.

(ii) Set the transform values X(k) to zero at all positions k except the highest ones. Alterna-
tive:
(ii) Set the transform values X(k) to zero at all positions k where this initial estimate X̂(k)

is below a threshold Tr,

X(k) = 0 for k , ki, i = 1, 2, ..., K̂

ki = arg{
∣∣∣X̂(k)

∣∣∣ > Tr}.

This criterion is not sensitive to Tr as far as all nonzero positions of the original transform
are detected (X̂(k) is above the threshold) and the total number K̂ of transform values in X̂(k)
above the threshold is lower than the number of available samples, i.e., K ≤ K̂ ≤ M.
All K̂ −K transform values that are zero in the original signal will be found as zero-valued.
(iii) The unknown nonzero (including K̂ − K zero-valued) transform coefficients could be

then easily calculated by solving the set of M equations for available instants n ∈ M, at the
detected nonzero candidate positions ki, i = 1, 2, ..., K̂,

K̂∑
i=1

X(ki)ψki (n) = x(n), for n ∈M.

This system of the form
AKXK= y

is now reduced to the problem with known positions of nonzero coefficients (considered in
the previous subsection). It is solved in the least square sense as (8)

XK =
(
AH

K AK

)−1
AH

K y. (11)
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The reconstructed coefficients X(ki), i = 1, 2, ..., K̂, (denoted by vector XK) are exact, for all
frequencies. If some transform coefficients, whose true value should be zero, are included
(when K < K̂) the resulting system will produce their correct (zero) values.
Comments: In general, a simple strategy can be used by assuming that K̂ = M and by

setting to zero value only the smallest N−M transform coefficients in X̂(k). System (3) is then
a system of M linear equations with K̂ = M unknown transform values X(ki). If the algorithm
fails to detect a component the procedure can be repeated after the detected components are
reconstructed and removed. This simple strategy is very efficient if there is no input noise.
Large K̂, close or equal to M, will increase the probability that full signal recovery is achieved
in one step. In this paper, it will be shown that in the case of an additive (even small) input
noise in all signal samples, a reduction of the number K̂ as close to the true signal sparsity K
as possible will improve the signal to noise ratio.
Example: Consider a discrete signal

x(n) = 1.2e j2πn/16+ jπ/4 + 1.5e j14πn/16− jπ/3 + 1.7e j12πn/16,

for 0 ≤ n ≤ 15, sparse in the DFT domain since only three DFT values are different than zero.
Assume now that its samples x(2), x(4), x(11), and x(14) are not available. We will show that,
in this case, the exact DFT reconstruction may be achieved by:
(i) Calculating the initial DFT estimate by setting unavailable sample values to zero

X̂(k) =
∑
n∈M

x(n)e j2πkn/16=16AHy,

where n ∈M = {0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15}.
(ii) Detecting, for example K = 3 positions of maximal DFT values, k1, k2, and k3, and (3)

calculating the reconstructed DFT values at k1, k2, and k3 from system

1
16

3∑
i=1

X(ki)e j2πkin/16 = x(n),

where n ∈M = {0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15} are the instants where the signal is available.
The discrete-time signal x(n), with 0 ≤ n ≤ 15 is shown in Fig. 2. The signal is sparse in

the DFT domain since only three DFT values are different than zero (Fig. 2 (second row)).
The CS signal, with missing samples x(2), x(4), x(11), and x(14), being set to 0 for the initial
DFT estimation, is shown in Fig. 2 (third row). The DFT of the signal, with missing values
being set to 0, is calculated and presented in Fig. 2 (fourth row). There are three DFT values,
at k1 = 1, k2 = 6, and k3 = 7

K = {1, 6, 7}

above the assumed threshold, for example, at level of 11. The rest of the DFT values is set to
0. This is justified by using the assumption that the signal is sparse. Now, we form a set of
equations, for these frequencies k1 = 1, k2 = 6, and k3 = 7 as

1
16

3∑
i=1

X(ki)e j2πkin/16 = x(n),
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where n ∈M = {0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15} are the instants where the signal is available.
Since there are more equations than unknowns, the system AKXK= y is solved using XK =(
AH

K AK

)−1
AH

K y. The obtained reconstructed values are exact, for all frequencies k, as in Fig. 2
(second row). They are shown in Fig. 2 (fifth row).
If the threshold was lower, for example at 7, then six DFT values at positions

K = {1, 6, 7, 12, 14, 15}

are above the assumed threshold. The system with six unknowns

1
16

6∑
i=1

X(ki)e j2πkin/16 = x(n),

where n ∈M = {0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15}will produce the same values for X(1), X(6),
and X(7) while the values X(12) = X(14) = X(15) = 0 will be obtained.
If the threshold is high to include the strongest signal component only, then the solution is

obtained through an iterative procedure described in the next subsection.

C. Iterative Procedure
If components with very different amplitudes exist and the number of available samples is

not large, then the iterative procedure should be used. This procedure could be implemented
as follows. The largest component is detected and estimated first. It is subtracted from the
signal. The next one is detected and the signal is estimated using the frequency from this
and the previous step(s). The estimated two components are subtracted from the original
signal. The frequency of next components is detected, and the process of estimations and
subtractions is continued until the energy of the remaining signal is negligible or bellow an
expected additive noise level.

Algorithm
(i) Calculate the initial transform estimate X̂1(k) by using the available/remaining signal

values x1(n) = x(n)
X̂1(k) =

∑
n∈M

x(n)ϕk(n)

Set the transform values X̂(k) to zero at all positions k except the highest one at k = k1,
K̂1= {k1}. Set the counter to r = 1.
Form the matrix A1 using the available samples in time n ∈ NA and detected index k ∈ K̂1,

with one nonzero component. Calculate the estimate of the transformation coefficient at k = k1

X̂1 =
(
AH

1 A1

)−1
AH

1 y.

Calculate the signal estimation (as the inverse DFT)

x̂1(n) = X̂1(k1)ψk1 (n), for n ∈M

and check
ε =

∑
n∈M |x(n) − x̂1(n)|2∑

n∈M |x(n)|2
.
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Fig. 2: Original signal in the discrete-time domain (first row); the DFT of the original
signal (second row); signal with four missing samples at n = 2, 4, 11, and 14 set to
zero (third row); the DFT of signal with missing values being set to 0 (fourth row). The
reconstructed signal assuming that the DFT contains components only at frequencies
where the initial DFT is above threshold (fifth row). Absolute values of the DFT and

real part of signal are shown.

If, for example ε < 10−5, stop the calculation and use x(n) = x̂1(n). If not then go to the next
step.

(ii) Set the counter to r = r + 1. Form a signal

er(n) = x(n) − x̂r−1(n),
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at the available sample positions and calculate the transform

Êr(k) =
∑
n∈M

er(n)ϕk(n).

Set the transform values Êr(k) to zero at all positions k except the highest one at k = kr. Form
the set of r indices, using union of the previous maxima positions and the detected position,
as

K̂r= {K̂r−1, kr}.

Form matrix Ar using the available samples in time n ∈ M and detected K̂r indices k ∈ K̂r.
Calculate the estimate of Kr transformation coefficients

X̂Kr =
(
AH

r Ar

)−1
AH

r y.

Calculate the signal
x̂r(n) =

∑K̂r
i=1X̂r(ki)ψki (n), for n ∈M

and check
ε =

∑
n∈M |x(n) − x̂r(n)|2∑

n∈M |x(n)|2
.

If, for example ε < 10−5, stop the calculation and use

x(n) = x̂r(n).

Else repeat step (ii).
Example: Signal

x(n) = sin(12π
n
N

+
π

4
) + 0.7 cos(40π

n
N

+
π

3
) − 0.4

with N = 64 is shown in Fig.3. Small number of samples is available M = 16 with different
signal amplitudes, making one-step recovery impossible. The available signal samples y(n)
are shown in Fig.3 (second row, left). The iterative procedure is used and, for the detected DFT
positions during the iterations, the recovered signal is calculated according to the presented
algorithm. The recovered DFT values in the rth iteration are denoted as Xr(k) and presented
in Fig.3. After first iteration the strongest component is detected and its amplitude is esti-
mated. At this stage, other components behave as noise and make amplitude value inaccurate.
Accuracy improves as the number of detected components increases in next iterations. After
five steps the agreement between the reconstructed signal and the available signal samples
was complete. Then the algorithm is stopped. The DFT of the recovered signal is presented
as X5(k) in the last subplot of Fig.3. Its agreement with the DFT of the original signal, Fig.3
(first row, right) is complete.

D. Unavailable/Missing Samples Noise

The initial DFT calculation in reconstruction algorithms is done assuming zero-valued
missing samples. The initial calculation quality has a crucial importance to the successful
signal recovery. With a large number of randomly positioned missing samples, the missing
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Fig. 3: Iterative signal recovery

samples manifest as a noise in this initial transform. Once the reconstruction conditions are
met for a sparse signal and the exact reconstruction is achieved, the noise due to missing sam-
ples does not influence the results in a direct way. It influences the possibility to recover a
signal. The accuracy of the recovery results is related to the additive input noise only. The
input noise is transformed by the recovery algorithm into a new noise depending on the signal
sparsity and the number of available samples. A simple analysis of this form of noise will be
presented in the second part of this section.
Consider a sparse signal in the DFT domain with nonzero coefficients X(k) at the positions

k ∈ K ={k1, k2, ..., kK}

x(n) =

K∑
p=1

Ape j2πnkp/N ,
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where Ap are the signal component amplitudes. The initial DFT is calculated using n ∈ M =

{n1, n2, ..., nM}

X(k) =
∑
n∈M

x(n)e− j2πnk/N =
∑
n∈M

K∑
p=1

Ape− j2πn(k−kp)/N . (12)

We can distinguish two cases:
(1) For k = ki ∈ {k1, k2, ..., kK} then, with M = card(M),

X(ki) = AiM +
∑
n∈M

K∑
p=1
p,i

Ape− j2πn(ki−kp)/N .

The value of

Ξ =
∑
n∈M

K∑
p=1
p,i

Ape− j2πn(ki−kp)/N (13)

with random set M = {n1, n2, ..., nM}, for 1 � M � N, can be considered as a random
variable. Its mean over different realizations of available samples (different realizations of
sets M) is E{Ξ} = 0.The mean value of X(ki) is

E{X(ki)} = AiM.

(2) For k < {k1, k2, ..., kK} the mean value of (12) is

E{X(k)} = 0.

The mean value of (12) for any k is of the form

E{X(k)} = M
K∑

p=1

Apδ(k − kp),

Its variance is [12, 23]

σ2
N(k) = var(X(k)) =

K∑
p=1

A2
pM

N − M
N − 1

[
1 − δ(k − kp)

]
. (14)

The ratio of the signal amplitude X(k1) and the standard deviation σN(k) for k , k1 is crucial
parameter (Welsh bound for coherence index µ of measurement matrix A) for correct signal
detection. Its value is

σN(k)
|X(k1)|

=

√
N − M

M(N − 1)
.

Note that the variance in a multicomponent signal with K > 1 is a sum of the variances
of individual components at all frequencies k except at ki ∈ {k1, k2, ..., kK} when the values
are lower for |Ai|

2 M N−M
N−1 since all component values are added up in phase, without random

variations.
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According to the central limit theorem, for 1 � M � N the real and imaginary parts
of the DFT value for noise only positions k < {k1, k2, ..., kK} can be described by Gaussian
distribution,N(0, σ2

N/2) with zero-mean and variance σ2
N = σ2

N(k). Real and imaginary parts
of the DFT value, at the signal component position ki ∈ {k1, k2, ..., kK}, can be described by
the Gaussian distributions

N(M Re{Ap}, σ
2
S p
/2), and

N(M Im{Ap}, σ
2
S p
/2),

respectively, where σ2
S p

= σ2
N − A2

pM N−M
N−1 , according to (14).

Example: For a discrete-time signal

x(n) = A1e j2πk1n/N + A2e j2πk2n/N + A2e j2πk3n/N , (15)

with N = 64, A1 = 1, A2 = 1/2, A3 = 1/4, the DFT is calculated using a random set of M = 16
samples. Calculation is performed with 105 random realizations with randomly positioned M
samples and random values of k1, k2, and k3. Histogram of the DFT values, at a noise only
position k < {k1, k2, k3} and at the signal component k = k1 position, is presented in Fig.4 (left).
Histogram of the DFT real part is shown, along with the corresponding Gaussian functions
N(0, 21

16
N−M
N−1 ) andN(M, 5

16
N−M
N−1 ), shown by green dots. The same calculation is repeated with

M = 64, Fig.4 (right). We can see that the mean value of the Gaussian variable X(k) can
be used for the detection of the signal component position. Also the variance is different for
noise only and the signal component positions. It can also be used for the signal position
detection. In the case with M = 16, the histograms are close to each other, meaning that there
is a probability that a signal component is missdetected. Histograms are well separated in the
case when M = 64. It means that the signal component will be detected with an extremely
high probability in this case. Calculation of the detection probability is straightforward with
the assumed probability density functions.
The spark based relation can be obtained within the framework of the previous analysis if

we assume that the noises (13) due to missing samples coming from different components of
the same (unity) amplitude Ai are added up (equal amplitudes are the worst case for this kind
of analysis) with the same phase to produce [23],

X(k) =
∑
n∈M

K∑
p=1

e− j2πn(k−kp)/N = K
∑
n∈M

e− j2πn(k−kp)/N (16)

at some frequency k < {k1, k2, ..., kK}. Random variable
∑

n∈M e− j2πn(k−kp)/N (since n ∈ M is
random) should also assume its maximal possible value (calculated over all possible kp and
all possible positions k, k , kp). The maximal possible value of this variable is related to the
coherence index µ of the partial DFT matrix defined as

µ = max
∣∣∣µ(k, kp)

∣∣∣ =
1
M

max
k,kp

∣∣∣∣∣∣∣∑n∈M e− j2πn(k−kp)/N

∣∣∣∣∣∣∣ . (17)

It means that maximal possible value of this variable is µM. It should also be assumed that
(K − 1) remaining noise components (due to missing samples) at the component position
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Fig. 4: Histograms and Gaussian probability density functions for the signal and noise
only positions in the DFT for a three-component signal with N = 128 and M = 16
(left) and M = 64 (right). The histograms are calculated in 105 random realizations of

M available samples and random signal frequency positions.

k = kp assume the same maximal value µM and that all of them subtract in phase from the
signal mean value M at k = kp. Condition for the correct detection of a component position
at k = kp is then such that the minimal possible amplitude of the component M − Mµ(K − 1)
is greater than the maximal possible noise MµK at k < {k1, k2, ..., kK}, i.e.,

M − Mµ(K − 1) > MµK

or
K <

1
2

(1 +
1
µ

) =
1
2

spark(A),

where spark(A) is the spark of the measurement matrix A (spark of matrix A is defined as the
smallest number of dependent columns or rows). According to many very unlikely assump-
tions that has beenmade, we can state that this is a very pessimistic bound for K. Therefore, for
a high degree of randomness, a probabilistic approach may be more suitable for the analysis
than the spark based relation.

E. Additive Noise Influence
Assume an additive noise ε(t) in the input signal. In a matrix form this system of M linear

equations with K unknowns reads
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y + ε = AXK

The solution follows for
XK = XKS + XKN

where XKS and XKN are the reconstructed signal and noise components respectively.
Assume that the reconstruction conditions are met and the positions of nonzero coefficients

K ={k1, k2, ..., kK} can be determined through a single step or iterative procedure [13, 20, 22].
The equations to find the unknown coefficients are written for M > K time instants ni, i =

1, 2, ...,M ≥ K
AKXK= y + ε (18)

where XK = [X(k1) X(k2) ... X(kK)]T is the vector of unknown nonzero coefficients val-
ues (at the determined positions) and y is the vector of the available signal samples y =

[x(n1) x(n2) ... x(nM)]T .The matrix AK is the measurements matrix A with the columns
corresponding to the zero-valued transform coefficients k < {k1, k2, ..., kK} being excluded.
For a given set {k1, k2, ..., kK} = K the coefficients reconstruction condition can be easily cal-
culated as

XK=
(
AH

K AK

)−1
AH

K (y + ε). (19)

where XKS =
(
AH

K AK

)−1
AH

K y and XKN =
(
AH

K AK

)−1
AH

Kε is the noise influence to the recon-
structed signal coefficients.
The input signal-to-noise (SNR) ratio, if all signal samples were available, is

S NRi = 10 log
∑N−1

n=0 |x(n)|2∑N−1
n=0 |ε(n)|2

= 10 log
Ex

Eε
.

Assume the noise energy in M available samples used in the reconstruction is

EεA =
∑
n∈M

|ε(n)|2 . (20)

The correct amplitude in the signal transform at the frequency kp, in the case if all signal
samples were used, would be NAp. To compensate the resulting transform for the known
bias in amplitude when only M available samples are used we should multiply the coefficient
by N/M. It means that is a full recovery, a signal transform coefficient should correspond
to the coefficient of the original signal with all signal samples being used. The noise in the
transform coefficients will also be multiplied by the same factor. Therefore, its energy would
be increased to EεAN2/M2. The signal-to-noise ratio in the recovered signal would be

S NR = 10 log
∑N−1

n=0 |x(n)|2

N2

M2

∑
n∈M |ε(n)|2

(21)

If the distribution of noise in the samples used for reconstruction is the same as in other signal
samples then

∑
n∈M |ε(n)|2 = Mσ2

ε and

S NR = 10 log
∑N−1

n=0 |x(n)|2

N2

M2 Mσ2
ε

= S NRi − 10 log
( N

M

)
. (22)
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Table I
Signal to noise ratio in the reconstructed signal according to the theory S NRT and the

statistics S NRS for various M. Input signal to noise ratio is denoted by S NRi

SNR in [dB] M = 128 M = 160 M = 192 M = 224
S NRi 3.5360 3.5326 3.5788 3.5385
S NRT 18.5953 19.5644 20.3562 21.0257
S NRS 18.7203 19.5139 20.2869 21.7302

Therefore, a signal reconstruction that would be based on the initial estimate (10) would
worsen SNR, since N > M.
Since only K out of N DFT coefficients are used in the reconstruction the energy of the

reconstruction error is reduced for the factor of K/N as well. Therefore, the energy of noise
in the reconstructed signal is

EεR =
K
N

N2

M2

∑
n∈M

|ε(n)|2 .

The output signal to noise ratio in the reconstructed signal is [20, 22, 23]

S NR = 10 log
∑N−1

n=0 |x(n)|2

KN
M2

∑
n∈M |ε(n)|2

= 10 log
∑N−1

n=0 |x(n)|2

K
M

∑N−1
n=0 |ε(n)|2

. (23)

It is related to the input signal to noise ration S NRi as

S NR = S NRi − 10 log
( K

M

)
. (24)

Example: Theory is illustrated on a four component noisy signal

x(n) = A1 exp( j2πk1n/N) + A2 exp( j2πk2n/N)
+ A3 exp( j2πk3n/N) + A4 exp( j2πk4n/N) + ε(n)

as well, where A1 = 1, A2 = 0.75, A3 = 0.5, A4 = 0.67, N = 257, and {k1, k2, k3, k4} =

{58, 117, 21, 45}. The signal is reconstructed using iterative calculation to find nonzero coef-
ficients K ={k1, k2, ..., kK} and (19) to find the signal. The results are presented in the Table I.
The agreement of the numerical statistical results S NRS with this simple theory in analysis of
noise influence to the reconstruction of sparse signals S NRT is high for all considered S NRi.

4. Nonsparse Signal Reconstruction

According to the results in previous section, the missing samples can be represented by a
noise influence. Assume that we use a reconstruction algorithm for a signal of sparsity K on
a signal whose DFT coefficients X are not sparse (or not sufficiently sparse). Denote by XK
the sparse signal with K nonzero coefficients equal to the largest K coefficients of X. Suppose
that the number of components K and the measurements matrix satisfy the reconstruction
conditions so that a reconstruction algorithm can detect (one by one or at once) largest K
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components (A1, A2,...AK) and perform signal reconstruction to get XR. The remaining N −K
components (AK+1,AK+2,...,AN) will be treated as noise in these K largest components. Vari-
ance of a signal component is |Ai|

2 M(N − M)/(N − 1). After reconstruction this variance
is

|Ai|
2 N2

M2

M(N − M)
N − 1

� |Ai|
2 N

N − M
M

.

The total energy of noise in the reconstructed K largest components XR will be

‖XR−XK‖
2
2 = KN

N − M
M

N∑
i=K+1

|Ai|
2

Denoting the energy of remaining signal, when the K largest are removed from the original
signal, by

‖X − XK‖
2
2 = N

N∑
i=K+1

|Ai|
2

we get
‖XR−XK‖

2
2 = K

N − M
M

‖X − XK‖
2
2 .

If the signal is sparse, i.e., X = XK , then

‖XR−XK‖
2
2 = 0.

The same result follows if N = M

‖XR−XK‖
2
2 = 0.

That is, the error will be zero if a complete DFT matrix is used in calculation of any signal
component.
Using Schwartz inequality ‖X‖2 ≤ 1

√
N
‖X‖1 follows

‖XK−XR‖2 ≤

√
N − M

M
K

N − K
‖X − XK‖1 .

It means that if ‖X − XK‖1 is minimized then the upper bound of the error ‖XK−XK‖2 is also
minimized.
Based on the previous results we can easily get the following result.

A. Theorem for the Error in a Nonsparse Signal Reconstruction

Theorem 1 Consider a signal x(n), n = 0, 1, ...,N − 1, with transformation coefficients X
and unknown sparsity in this transformation domain, including the case when the signal is
not sparse. Assume that the signal is reconstructed using the reconstruction algorithms as-
suming that its sparsity were K. Denote the reconstructed signal by XR and the original signal
transform at the nonzero value positions k ∈ K of the reconstructed signal coefficients by XK
, where XK = X for k ∈ K and XK = 0 for k < K. Assume that in M ≤ N available samples
of the input signal in the time domain there is an additive white noise with variance σ2

ε. The
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total error in the reconstructed signal, with respect to the original signal at the same nonzero
coefficient positions, is

‖XK−XR‖
2
2 = K

N − M
M

‖X − XK‖
2
2 +

K
M

Nσ2
ε.

Proof of this theorem easily follows from the presented analysis.
Example: Consider a nonsparse signal

x(n) = e j2πk1n/N + 0.8e j2πk2n/N + 0.77e j2πk3n/N + 0.75e j2πk4n/N

+

250∑
i=0

(
1
3

)1+i/50e j2πki+5n/N

where ki, i = 1, 2, ..., 251+4 are random frequency indices from 0 to N−1. Using N = 257 and
M = 192, the first K = 4 components of signal are reconstructed. The remaining 251 signal
components are considered as disturbance. Reconstruction of K = 4 largest components
is done in 100 independent realizations with different frequencies and positions of available
samples. The result for S NR in the noise free case, obtained statistically and by using the
Theorem, is

S NRstat = 10 log
 ‖XK‖

2
2

‖XK−XR‖
2
2

 = 23.1476

S NRtheor = 10 log

 ‖XK‖
2
2

K N−M
M ‖X − XK‖

2
2

 = 23.1235.

Note that the calculation of S NRtheor is simple since we assumed that the amplitudes of dis-
turbing components are coefficients of a geometric series. One realization with K = 4 is
presented in Fig. 5. The case when K = 10 is presented in Fig. 6. Red signal (with dots)
represents the reconstructed signal with assumed sparsity and the signal with black crosses
represents the original nonsparse signal.
In the case of additive complex-valued noise of variance σ2

ε = 2 the results are

S NRstat = 10 log
 ‖XK‖

2
2

‖XK−XR‖
2
2

 = 17.0593

S NRtheor = 10 log

 ‖XK‖
2
2

K N−M
M ‖X − XK‖

2
2 + K

M Nσ2
ε

 = 17.0384.

The decrease in the SNR due to noise is

∆S NRtheor = 10 log

 K N−M
M ‖X − XK‖

2
2

K N−M
M ‖X − XK‖

2
2 + K

M Nσ2
ε

 = −6.0851.

The simulation is repeated with M = 128 and the same noise. The SNR values are S NRtheor =

14.3345 and S NRstat = 14.4980.
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Fig. 5: Single realization reconstruction of K = 4 largest signal components of a
nonsparse noisy signal.

50 100 150 200 250

0

100

200

300

400

500

Fig. 6: Single realization reconstruction of K = 10 largest signal components of a
nonsparse noisy signal.

5. Conclusions

The goal of compressive sensing is to reconstruct a sparse signal using a reduced set of
available samples. It can be done by minimizing the sparsity measure and available samples.
A simple algorithm for signal reconstruction is presented. One step reconstruction and an
iterative procedure of the reconstruction algorithm are given. Noisy environment is taken into
account as well. The input noise can degrade the reconstruction limit. However, as far as
the reconstruction is possible, the noise caused by missing samples manifests its influence
to the results accuracy in simple and direct way through the number of missing samples and



L. Stanković, I. Stanković: Reconstruction of Sparse and Nonsparse Signals... 167

signal sparsity. The accuracy of the final result is related to the input noise intensity, number
of available samples and the signal sparsity. A theorem presenting error in the case when the
reconstruction algorithm defined for reconstruction of sparse signals are used in for nonsparse
signals reconstruction is defined as well. The theory is checked and illustrated on numerical
examples.

6. Appendix: Reconstruction Conditions

Consider an N-dimensional vector X whose sparsity is K and its M measurements y = AX,
where the measurements matrix A is an M × N matrix, with K < M ≤ N. A reconstruction
vector X can be achieved from a reduced set of samples/measurements using the sparsity
measures minimization.
The `1-norm based solution of constrained sparsity measure minimization

min ‖X‖1 subject to y = AX (25)

is the same as the `0-norm based solution of

min ‖X‖0 subject to y = AX

if the measurements matrix A satisfies the restricted isometry property for a 2K sparse vector

(1 − δ2K) ‖X2K‖
2
2 ≤

1
EΨ

‖A2KX2K‖
2
2 ≤ (1 + δ2K) ‖X2K‖

2
2

with a sufficiently small δ2K . Constant EΨ is the energy of columns of measurement matrix
A. For normalized energy EΨ = 1, while for the measurement matrix obtained using M
rows of the standard DFT matrix EΨ = M. If the signal X is not sparse then the solution of
minimization problem (25) denoted by XR will satisfy

‖XR−X‖2 ≤ C0
‖XK−X‖1
√

K
(26)

where XK is K sparse signal corresponding to K largest values of X. If the signal X is of
sparsity K then ‖XK−X‖2 = 0 and XR= X. In the case of noisy measurements when

‖y − AX‖2 ≤ ε

then [3]
‖XR−X‖2 ≤ C0

‖XK−X‖1
√

K
+ C1ε

where C0 and C1 are constants depending on δ2K . For example, with δ2K = 1/4 constants are
C0 ≤ 5.5 and C1 ≤ 6, [3].
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