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Abstract: The paper describes Polya frequency functions, and the construction of 

Polya rational parametric interpolation kernel. The paper also provides the results of 

the estimation of fundamental frequency of speech signal obtained by applying the 

convolution interpolation algorithm with an implemented Polya rational parametric 

kernel. The analysis of the estimation of fundamental frequency was performed on a 

speech signal superimposed by AWGN when SNR=0-50 dB. In the processing of a 

signal in time domain some common window functions were applied. Then, MSE was 

used as a measurement of the quality of estimation to determine the optimum values 

of Polya interpolation kernel parameter. A comparative analysis was performed with 

the results of the estimate of the fundamental frequency by using the Keys one-

parameter, quadratic and Polya quasi-rational kernel. 
 

1. INTRODUCTION 

In many scientific disciplines there is a need to analyze scattered data. The scattered data 

represent a set made of n irregularly distributed points Pi (xi,yi), i=1, 2, ..., n in a xOy plane. 

Compared to the regular grid, the points Pi are irregularly distributed, that is, they are 

scattered inside the cells of the regular grid. By the process of grid regularization, called 

griding, all Pi points are allocated in the vertices of the regular grid. This allows data 
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processing by using algorithms developed for the data which are shown in regular grids. 

This problem is solved by using interpolation algorithm or approximation algorithm. The 

analysis of scattered data is also performed by radial basis functions (RBF) [1]-[3]. These 

functions are used intensively for the numerical solving of partial differential equations, 

neural networks etc. [4], [5]. The invariability feature of RBFs in relation to translation, 

rotation and reflection makes them suitable for implementation in digital image processing. 

In their papers [6]-[8], Bochner and Schoenberg have shown important results in the field 

of RBF study. Based on their theorems, they derived the equations for interpolation kernels 

which are suitable for the interpolation of the scattered data. Different interpolation kernels 

offer different precision and efficiency of the interpolation algorithms. Apart from that, 

different kernels have different numerical complexity, as well as different time of 

processing. Paper [9] shows parametric interpolation kernels derived by using Polya 

frequency functions. When using parametric kernels, it is possible to influence the precision 

of the interpolation function by changing the values of kernel parameter, in other words, it 

is possible to adapt the kernel to a problem according to some criterion [10]-[14]. 

To estimate the fundamental frequency (f0) the time and spectral domain [13]-[18] can be 

used. For working in the spectral domain, first the Discrete Fourier Transform (DFT) needs 

to be performed over the discrete signal. As a result, DFT provides the approximation of the 

signal spectrum. Namely, DFT is calculated on frequencies fk for k=0, 1,…, NDFT-1, where 

NDFT is the length of DFT. Considering its energy, the fundamental frequency is the 

largest component in the spectral domain. However, in the case when the fundamental 

frequency differs from the calculating frequency of DFT, the estimation of spectral 

components will be wrong because of the leakage effect of the spectrum. It is possible to 

improve the precision of the estimation of the f0 by using interpolation. However, 

interpolation function can be of an impractically high order, which as a consequence 

provides a more complex numerical algorithm and, therefore, a longer calculating time. To 

make a compromise, the solution is to apply the convolution interpolation with polynomial 

kernels of a lower order [10]-[12]. In his paper [10], Keys suggests parametric convolution 

kernel of the third order. By using the Taylor extension along with minimizing the 

interpolation error, Keys suggested the optimum value of the parameter (α=-0.5). The 

interpolation kernel from [10] used with the suggested parameter is suitable for image 

processing. When f0 was estimated by using the Keys parametric kernel, the suggested 

optimal kernel parameter, α, did not show satisfactory results. Therefore, it was necessary 

to determine the optimal parameter values for the Keys kernel to estimate the f0 [13], [14]. 

This paper analyzes the use of Polya rational parametric interpolation kernel for the 

estimation of the fundamental frequency of the sinusoidal and speech signal in the spectral 

domain. The authors of this paper have formed a Polya rational parametric interpolation 

kernel based on the Polya kernel from the paper [9]. The analysis of the precision of the 

estimate of the f0 was performed for the sinusoidal and speech signal when they were 

superimposed by Additive White Gaussian Noise (AWGN) in the following range: SNR= 0-

50 dB. The precision of estimating the fundamental frequency was measured by using the 

Mean Square Error (MSE). A greater precision was obtained by the processing of a time 

discrete signal by using some of the standard window functions (Hann, Hamming, …) and 

by choosing the optimal parameter of the convolution kernel. Based on the comparative 

analysis of the results of the application of Keys one-parameter [10], quadratic [14] and 

Polya quasi-rational kernel [18] the efficiency of the suggested Polya rational parametric 
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interpolation kernel used in the estimation of the fundamental frequency of the speech 

signal was estimated. 

Further organization of this paper is as follows: Section 2 describes Polya frequency 

functions. Section 3 shows the Polya rational parametric interpolation kernel. Section 4 

shows the experiment, the received results and their analysis. Section 5 presents the 

conclusion. 

2. POLYA FREQUENCY FUNCTIONS  

This paper analyzes the efficiency of the convolution interpolation with Polya 

interpolation kernel. In the process of creating a Polya kernel the starting points are: a) 

positive definite and b) radial functions. 

A. Positive definite functions 

Definition 1. A continuous complex valued function CRf d
→:  is a positive definite 

function if  
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One of the most important results of positive definite functions and their characterization 

in terms of the Fourier Transform on set R, was presented by Bochner 1932. and in 1933. 
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Theorem 1 (Bochner). A complex function )(xf  is a positive definite function on 
d

R  if 

and only if )(xf is the Fourier Transform of the finite nonnegative Borel measure µ on 

d
R , that is, if the following applies ( )∫ −

=
d

R

ixy ydexf µ)( . In addition, if µ is a non-

negative finite Borel measure on 
d

R  whose carrier is not the set of Lebegsue measure zero, 

then )(xf  is strictly a positive definite. 

The proof of this theorem is provided in [6]. 

B. Radial functions 

Definition 2. Function )(xf  is radial if ( )xFxf =)( , where x  is the Euklid norm on 

d
R . 

In paper [7] Schoenberg provides a characterization of positive definite radial functions. 
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Theorem 2 (Schoenberg). A continuous function ( )xFxf =)(  is positive definite and 

radial on 
d

R  for every d=1,2,... if and only if it can be presented in the form: 
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where µ is the finite nonnegative Borel measure on [ ).,0 ∞  

The proof of this theorem can be found in [7]. 

C. Polya frequency functions 

Definition 3. A nonnegative measurable function, ( )xΛ , which on R complies with the 

condition, ( )∫ ∞<Λ<
R

dxx0 , is called a Polya frequency function if it complies with the 

following condition: for each two sets of strictly ascending numbers 
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the following condition is met: 
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Schoenberg gives the necessary and sufficient conditions for integrable functions to be 

called Polya frequency functions. 

Theorem 3 (Schoenberg). The two-sided Laplace transformation of Polya frequency 

function ( )xΛ  converges in a vertical strip and can be written as follows: 
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Besides, when ,0>γ  the function ( )xΛ >0 is of class ( )RC
∞

 and its derivatives 
( )( )xn

Λ  

have only n simple real zeros for all n values. 

The proof of this theorem is provided in [8]. 

An interesting consequence of this theorem is the existence of Polya frequency function 

( )xΛ  whose two-sided Laplace transformation is a quasi-rational function. (it can be 

written as a product of a rational and an entire function). Namely, by using 0=mδ  in the 

equation (6) when 1
0
≥> Mm  this follows: 
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By using ωis = in equation (5) this follows: 
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On the other hand, by using this change in equation (8) this follows: 
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By applying C =1, 2
0
=M , ,0
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== δγ
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0 δδ −==< c  in (10) the equation for 

rational Polya kernel is obtained: 
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where Λ(x) is a Polya frequency function: 
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By using C =1, 1
0
=M , ,0=γ

01
0 δδ −==< c  in (10) the equation for Polya quasi-

rational interpolation kernel is obtained: 
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with Polya frequency function: 
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where ( )xψ  is the Heviside function. 

3. POLYA RATIONAL PARAMETRIC INTERPOLATION KERNEL 

A. Kernel 

By using the analogy with Polya frequency function, that is, with its Fourier transform 

(11) the parametric interpolation kernel was constructed: 
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where α is a kernel parameter, and L kernel length. It is possible to adjust this parameter so 

that the characteristics of the kernel can adjust to the corresponding problem, in accordance 

with a criterion. Interpolation kernel (15) does not meet the condition ( ) 0=
k
fr , which as 

a consequence leads to the following: the interpolated function cannot pass through the 

knots. Therefore, a function that is defined in this way represents the approximation of the 

function. 

B. Algorithm for determining the interpolation kernel parameter 

This paper analyzes the problem of estimating the fundamental frequency of the signal by 

an analysis in the spectral domain. Therefore, the parameter α will be chosen in such a way 

to minimize the error of estimating the fundamental frequency in the spectral domain. The 

algorithm for determining the parameter α of the interpolation kernel r is set up based on 

the following steps: 

 

Input: Test signal s(n), sequence length N, real fundamental frequency 
0
f , interpolation 

kernel r, NDFT - length DFT, SNR. 

Output: Kernel parameter αopt. 

 

Step 1: Modification by using the window function w of N length: 

 

 wss
w

⋅= . (16) 
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Step 2: Through the implementation of the discrete Fourier transform the spectrum X is 

calculated: 

 

 X=DFT(sw, NDFT). (17) 

 

In this equation, NDFT stands for the length of DFT. 

Step 3: Peaking method is used to obtain the position of the spectral component with the 

highest amplitude: 

 

 kmax=peak_picking(X). (18) 

 

Step 4: By using the convolution interpolation in the neighbourhood of kmax the 

reconstructed function is calculated Xr(f). 

The reconstructed function is: 

 

 ( ) ( )∑
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2
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where pi=X(i), r(f) is the interpolation kernel, and k≤ f ≤k+1. 

Step 5: To determine the position of the maximum of the reconstructed function Xr(f), to 

equate the first derivative with zero and to estimate the fundamental frequency fe. 
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Step 6: Calculating the MSE between the estimated fe and the real f0 fundamental 

frequency depending on the α parameter, 

 

 ( )2
eo
ffMSE −= . (21) 

 

Step 7: Locating the minimum MSE and calculating the optimal value of the kernel 

parameter αopt. 

C. Test signal 

Algorithm of the estimate of f0 will be implemented on: 

a) simulated sinusoidal test signal and 

b) real speech test signal. 

Simulated sinusoidal signal for the testing of the interpolation algorithm is defined in 

paper [17]: 
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where f0 is the fundamental frequency, 
i

a and 
i
θ amplitude and phase of the i-th harmonic 

respectfully, K the number of harmonics, and M the number of points between two samples. 

The speech test signal is obtained by the recording of speech in a real acoustic 

environment [13]. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiment  

The estimating of the optimum parameter of Polya rational interpolation kernel as well as 

the choice of the window function is realized by the implementation of algorithms for the 

estimation of parameters (described in section 3. B) on the test signal. 

In this experiment, the parameters of the sinusoidal and speech test signal are as follows: 

f0=125-140 Hz, sampling frequency fs=8 kHz, block length N=256 (32 ms), K=10, M=100. 

Then the analysis of the efficiency of the estimate was performed when AWGN was 

superimposed over the test signals. The analysis was performed for the case when the 

values were SNR= {0, 10, 20, 30, 50} dB. The implemented windows were: Hamming, 

Hann, Blackman, Rectangular, Kaiser and Triangular. 

B. Results 

By using the Polya rational parameter kernel on the sinusoidal and speech test signals 

with the implementation of window functions, the results for MSEmin and αopt were 

obtained. They are shown in table I and in figures 1-6. In order to compare the results, table 

II also provides the results obtained by the implementation of Keys one-parameter 

quadratic interpolation kernel in [13], and table III shows the results of the quadratic 

interpolation kernel in [14] and Polya quasi-rational kernel on the sinusoidal signal [18]. 

Table IV shows the MSE values for different values of SNR and different window 

functions for the sinusoidal test signal. Table V offers the MSE values for different values 

of SNR and different window functions for the speech test signal. 
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Table I 

Minimum MSE and αopt for the application of Polya rational kernel for a sinusoidal and 

speech test signal. 

Sine test signal Speech test signal 
Window 

αopt MSEmin αopt MSEmin 

Hamming -0.400 0.0058 -0.380 0.0353 

Hann -0.400 0.0133 -0.400 0.0447 

Blackman -0.700 0.0300 -0.650 0.0607 

Rectang. -0.050 0.6712 -0.250 0.2521 

Kaiser -0.600 0.0138 -0.600 0.0421 

Triangular -0.400 0.0024 -0.400 0.0244 

 

Table II 

Minimum MSE and αopt for the application of the Keys kernel for a sinusoidal and speech 

test signal. 

Sine test signal Speech test signal 
Window 

αopt MSEmin αopt MSEmin 

Hamming -1.005 0.023 -0.995 0.0310 

Hann -0.885 0.004 -0.880 0.0349 

Blackman -1.801 0.001 -0.800 0.0358 

Rectang. -2.61 0.515 -2.400 0.4323 

Kaiser -1.125 0.020 -1.080 0.0339 

Triangular -1.028 0.0028 -1.028 0.0277 

 

Table III 

Minimum MSE and αopt for the application of Polya quasi-rational and quadratic 

interpolation  kernel for a sinusoidal test signal. 

Polya quasi-rational 

kernel 

Quadratic kernel 

Window 

αopt MSEmin αopt MSEmin 

Hamming -0.45 0.0068 -1.125 0.8727 

Hann -0.45 0.0138 -1.100 0.899 

Blackman -0.70 0.0300 -0.915 0.6014 

Rectang. -0.06 0.6717 -0.010 0.0726 

Kaiser -0.70 0.0155 -1.065 0.963 

Triangular -0.45 0.0044 -1.140 1.0026 
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Table IV 

MSE values depending on SNR and the window for the sinusoidal test signal. 

MSE 
Window 

0 dB 10 dB 20 dB 30 dB 50 dB 

Hamming 0.7559 0.1999 0.0372 0.0106 0.0058 

Han 1. 4124 0.2313 0.0411 0.0150 0.0133 

Blackman 1.7704 0.2178 0.0503 0.0343 0.0300 

Rectangular 5.9290 1.9925 1.0097 0.7851 0.6712 

Kaiser 0.1523 0.0645 0.0208 0.0131 0.0138 

Triangular 0.5347 0.1678 0.0302 0.0089 0.0024 

 

Table V 

MSE values depending on SNR and the window for the speech test signal. 

MSE 
Window 

0 dB 10 dB 20 dB 30 dB 50 dB 

Hamming 0.7075 0.0626 0.0184 0.0251 0.0353 

Han 0.9198 0.0648 0.0186 0.0263 0.0447 

Blackman 1.5207 0.1448 0.0624 0.0609 0.0607 

Rectangular 2.2466 0.3959 0.2601 0.2601 0.2521 

Kaiser 0.5045 0.0573 0.0193 0.0338 0.0421 

Triangular 0.6771 0.0541 0.0227 0.0254 0.0244 
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Fig. 1. The dependence of MSE on α for the application of the Blackman and Kaiser 

window in interpolation with a rational Polya kernel for a sinusoidal test signal. 
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Fig. 2. The dependence of MSE on α for the application of Hamming, Hann, and 

Triangular window in interpolation with a rational Polya kernel for a sinusoidal test signal. 
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Fig. 3. The dependence of MSE on α for the application of Hamming and Hann window in 

interpolation with a rational Polya kernel for a speech test signal. 
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Fig. 4. The dependence of MSE on α for the application of Blackman, Kaiser and 

Triangular window in interpolation with a rational Polya kernel for a speech test signal. 
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Fig. 5. The dependence of MSE on SNR in case of implementation of window functions 

in interpolation by using the rational Polya kernel for a sinusoidal test signal. 
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Fig. 6. The dependence of MSE on SNR in case of implementation of window functions 

in interpolation by using the rational Polya kernel for a speech test signal. 

C. Analysis of the results 

Based on the results above, it is concluded that: 

a) in case of application of the rational Polya kernel on a sinusoidal signal the smallest 

error was calculated for the triangular window function. In comparison to other window 

functions, the triangular one has shown better results: a) 59% (Hamming), b) 82% (Han), c) 

92% (Blackman), d) 83% (Kaiser) and e) 99% (Rectangular). The biggest error appeared 

when the Rectangular window function was used, 

b) with a speech signal, when interpolation by a rational Polya kernel was used, the 

application of the Triangular window function provided the smallest error: a) 31% 

(Hamming), b) 45% (Han), c) 60% (Blackman), d) 42% (Kaiser) and e) 90% (Rectangular), 

while the application of the Rectangular window function provided the biggest error, 

c) in case of the sinusoidal signal, compared to Keys one-parameter cubic convolution 

kernel [12] which gave the best results when Blackman window was applied, the Polya 

kernel showed a MSEmin_triang_Polya_sin / MSEmin_Black._Keys_sin=0.0024/0.001=2.4 times 

bigger error, 

d) the rational Polya kernel showed greater efficiency compared to the Keys kernel, on a 

speech signal when the Triangular window function was applied. After the comparison of 

the received results with the results for Keys one-parameter kernel [12] it was concluded 

that Polya kernel showed a MSEmin_triang_Keys_sp./MSEmin_triang_Polya _sp.=0.0277/0.0244=1.14 

times smaller error, 

e) by comparing the results received by the application of quadratic interpolation kernel 

[13] on a sinusoidal signal where the smallest MSE was for the Rectangular window 

function, it was concluded that the rational Polya kernel has a MSEmin_rectang_quadrat/ 

MSEmin_triang_Polya=0.0726/0.0024=30.25 times smaller Mean Square Error, 
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f) compared to the quasi-rational Polya interpolation kernel, for which the best results 

were obtained by using the Triangular window function, the suggested kernel on a 

sinusoidal signal has shown a MSEmin_triang_quasi_Polya /MSE min_triang_Polya=0.0044/0.0024=1.83 

times smaller error, 

g) the estimate of the precision of sinusoidal compared to a speech test signal when 

interpolation by Polya rational kernel is used after the application of window functions is:  

MSEmin_triangl_Polya_sp/MSEmin_triang_Polya_sin=0.0244/0.0024=10.16 times bigger, 

h) when using the rational Polya interpolation with the application of the Rectangular 

window function the speech signal is estimated more precisely. The error is MSEmin_rectang 

Polya_sin /MSEmin_rectang_Polya_sp=0.06712/0.2521=2.67 times smaller in the estimate of a speech 

signal, 

j) as SNR increases MSE decreases. In the case of a sinusoidal signal, the estimate of 

precision when SNR=50 dB compared to SNR=0 dB (Triangular window) is 

MSEmin_triangl_Polya_sin_0/MSEmin_triang_Polya_sin_50=0.6771/0.0244=27.5 times bigger, 

k) greater precision in a speech signal in case of the implementation of the Triangular 

window function is with the increase of SNR (the case when SNR=0 dB and SNR=50 dB) 

MSEmin_triangl_Polya_sin_0/MSEmin_triang_Polya_sin_50=0.5347/0.0024=222.79 times bigger. 

5. CONCLUSION 

This paper shows the results of the implementation of parametric rational Polya 

convolution kernel for estimating the fundamental frequency of the sinusoidal and speech 

signal. In order to minimize MSE, some window functions were implemented. It can be 

discerned that the best results, both with the sinusoidal and the speech signal, were obtained 

by the application of the Triangular window function. This kernel makes a more precise 

estimate of a sinusoidal signal, except in the case of implementation of the Rectangular 

window function, where greater precision was obtained for the speech signal. After 

comparing the obtained results with the results of the estimate of the fundamental frequency 

by using the quadratic convolution kernel in [14], Keys one-parametric kernel in paper [13] 

and quasi-rational Polya kernel in [18], it can be concluded that the estimate of fundamental 

frequency on a sinusoidal test signal by using the rational Polya kernel is 30.25 times more 

precise compared to the estimate in the case when the quadratic kernel was used, and 1.83 

times compared to the estimate by using the quasi-rational Polya kernel, while it is 2.4 

times smaller than the precision obtained by using the Keys one-parameter convolution 

kernel. In the case of the speech test signal, Polya rational kernel showed a 1.14 times 

greater precision compared to the estimate obtained by using the Keys kernel. Due to its 

small numerical complexity, the Polya rational kernel can be used for working in real time. 
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