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Abstract: In this paper, by using separation of variables in Laplace’s equation, we 

derive a formula for the capacitance of a thin line conductor positioned inside a  

grounded square shield at one of its cross-section symmetry axes. The formula, which 

is in the form of a slow convergent series, is transformed into the sum of two series, 

one of which can be summed in a closed form, and the other one is a very rapidly 

convergent series and may be replaced accurately enough by its first term. As a result 

a very simple formula for the capacitance is obtained. Based on this formula, we give 

some numerical results for the capacitance versus the conductor position inside the 

shield. In particular, when the conductor is at the center of the shield our results are 

compared with the results obtained from an aviabile empirical formula for different 

values of the shield size. 

  

 

1. INTRODUCTION 

Various analytical methods are available for determination of the potential function 

which is necessary for finding the capacitance of a thin line conductor inside a grounded 

shield of sufficiently regular shape. Among them, the most frequently used are separation 

of variables in Laplace’s equation, the method of images and the method of conformal 

mappings (in the two dimensional case) [1] – [3]. 

In this paper we use separation of variables in two-dimensional Laplace’s equation to 

derive a simple formula for the capacitance of a thin line conductor inside a grounded 

square shield, the conductor being positioned at one of the shield cross-section symmetry 

axes. 
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A similar method is used in [4] where simple formulas for the capacitance of a two-wire 

line symmetrically positioned inside a rectangular shield were derived. 

2. DETERMINATION OF THE POTENTIAL INSIDE THE SHIELD 

Fig. 1 shows the cross-section of the structure under investigation. A thin line conductor 

of radius R, with charge density q’, is at an arbitrary position along the x-axis, determined 

by xo, inside a grounded square shield of side a (a>>R). We also assume that the conductor 

is not too close to the shield walls, i.e a/2–xo>>R. 

 

                           
Fig.1. Thin line conductor inside grounded square shield. 

 

Let us divide the interior of the shield into two subdomains 1: xo≤x≤a/2, |y|≤b/2 and 2:  

–a/2≤x≤ xo, |y|≤b/2. By using separation of variables in two-dimensional Laplace’s 

equation we can write the potentials in subdomains 1 and 2 in the following forms 
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where A2n-1 and B2n-1 are unknown coefficients. It is evident from (1) and (2) that the 

boundary conditions in the shield walls are met (V1=0 for x=a/2 and y=±a/2, V2=0 for  
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x= –a/2 and y=±a/2), and that V1 and V2 are even function in y, as then should be by 

symmetry. The potential must be a continuous function at the subdomain interface x=xo, so 

the condition 

 

1 2V V  for x=xo (3) 

 

must be imposed. From (3), by using (1) and (2), we obtain 
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so that 
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To determine the unknown coefficients A2n-1  in (1)  and (4), we have at our disposal the 

boundary condition for the normal components Ex=–∂V/∂x of the electric field at the 

interface x=xo 
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where the Dirac δ – function accounts for the conductor line charge. By using (1) and (4), 

eqn. (5) reduces to 
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Now, we multiply (6) by cos(2n–1)πy/a, and integrate with respect to y from –a/2 to 

+a/2. This allows to find the unknown coefficients A2n-1 in (1) and  (4) 
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In deriving (7) we used orthogonality of the cosine function and the fact that 
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3. DETERMINATION OF THE CONDUCTOR CAPACITANCE 

To find the conductor potential we choose the point x=xo+R, y=0 on the conductor 

surface and substitute its coordinates into (8), which yields 
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hence, the capacitance is 
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where 
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The series in (10), defined by (11), diverges for R=0. So, since R is small, its 

convergence will be slow. We can accelerate convergence in the following way. We may 

write 
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where a∞
2n-1 is the asymptotic value of a2n-1 when n→∞. Since shx ~ 0.5ex  when x→∞, this 

asymptotic value is 
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and the series 2 1
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 2 1

2 1

1 1

1 e 1 1 e 1 2
ln ln

2 2 1 4 4
1 e

R R
n

a a

n R
n n a

a
a

n R

 
  

 


 
 


  

 


   

 

 

(14) 

where we used approximations 1 e 2
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By using (11), (13) and (14), eqn. (12) can be rewritten as 
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The essence of the performed transformation is that the series the right hand side of (15) 

converges very rapidly; in fact it can be replaced, with high accuracy, by its first term. 

Therefore, 
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justified by smallness of R. 

Finally, from (10) and (16) we obtain a simple formula for the capacitance 
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In particular, for xo=0,  
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which was obtained in [5]. We note that the logarithmic term in (17) - (18) gives the main 

contribution to the capacitance; the rest in the denominators serves as a correction factor. 

 

4.  NUMERICAL RESULTS 

Fig. 2 shows the capacitance calculated from (17) versus the conductor position. As 

expected, the capacitance increases as the conductor gets closer to the shield. 

In the special case when the conductor is at the center of the shield we can check 

accuracy of our approximate formula (18) by using an approximate formula for the 

characteristic impedance of the line constituted by the conductor and the shield [6] 
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which gives the capacitance [7] 
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where c=3∙108 m/s is speed of light. 
 

 
Fig. 2. Conductor capacitance versus its position. 

 

Table I shows a comparison of the capacitance values obtained by our approximate 

formula (18) and the corresponding values obtained from (19), for various a/R ratios. As 

can be seen, the procentual error does not exceed 0.4%. 
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Table I 

Capacitance of the centrally spaced conductor 

a/R formula (18)  [pF/m] formula (19)  [pF/m] error (%) 

100 13.9501    14.0057    0.3975     

150 12.6626    12.7082 0.3586     

200 11.8844    11.9244    0.3351     

250 11.3436    11.3799    0.3187     

300 10.9370    10.9707    0.3065     

350 10.6153    10.6469    0.2967     

400 10.3516    10.3816    0.2888     

450 10.1296     10.1582     0.2821     

500 9.9389 9.9664 0.2763 

5. CONCLUSION 

In this paper we derived a simple formula for the capacitance of a thin line conductor 

spaced inside a grounded shield, along one of the shield cross-section symmetry axes. In a 

particular case, when the conductor is at the center of the shield, we checked our results 

against the ones from an empirical formula, found in handbook literature. The exhibited 

error is partically negligible. 
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