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ABSTRACT:

General performance analysis of the instantaneousdquency (IF) estimators, for an
arbitrary frequency modulated (FM) signal, is presated. Shift covariant class of
quadratic time-frequency distributions as IF estimdors are considered. The
expressions for the IF estimator variance in the ®s of white stationary and white
nonstationary additive noises are derived. As speti cases of this analisis, the well
known results for the Wigner distribution and linear FM signal, and for the
spectrogram of signals whose IF may be considereds a constant within the lag
window, are presented. In addition, analysis of thdéinear FM signal is performed in
the cases of commonly used distributions, such agestrogram, Choi-Williams, Born-
Jordan. The quite simple expression for variance apectrogram of this signal (that is
highly signal dependent) is derived. The presentedexpressions are checked
statistically. It has been shown that the reducechterference distributions outperform
the Wigner distribution, but only in the case whenthe IF is constant or its variations
are small.

1. INTRODUCTION

Instantaneous frequency (IF) estimation is an ingmresearch topic in signal analysis [1],
[2], [14]-[24], [29]-[32]. There are several appobas to the IF estimation. Time-frequency
distributions (TFD) based approach is one of th&dj-[18], [20], [29]-[32]. The basis for
using TFDs' in IF estimation is their first momearbperty, [2], [3], [10]. The first-order
TFD moment, with respect to frequency, providesaaceptable IF definition for a time-
varying signal. The TFD, used to recover the IFtadirst moment, provides an unbiased
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estimate. The presence of noise, however, leadsésious degradation of the first moment
estimate due to the absence of any averaging idetimition. In other words, the first
moment may have a high statistical variance evemifgh values of input signal-to-noise
ratio, [24]. However, TFDs concentrate the enerfjyhe considered signal at and around
the IF in the TF plane, [2], [20], [24], [25], [29Fonsequently, as a natural alternative for
the first moment, the peak detection of the TFBsised as an IF estimator.

The IF estimation based on TFDs maxima is analyadd], [4], [14]-[18], [19], [21],
[23], [24], [29]-[32]. Out of the quadratic clas$ distributions only the most frequently
used ones are considered there: the Wigner distiibdor linear frequency-modulated
(FM) signal, and the spectrogram for signals witimgtant frequency. It has been shown
that, in the case of noisy signals, this estimégblir depends on the signal to noise ratio, as
well as on the window length.

In this paper we present a general analysis ofadpitrary shift covariant quadratic
TFD as an IF estimator, for any frequency modulagigphal The exact expressions for the
IF estimator variance in the cases of white statiprand white nonstationary noises are
derived. The corresponding expressions for somguéetly used TFDs from the Cohen
class (CD) are obtained as special cases, asWellpresented the well known results for
the Wigner distribution and linear FM signal, aod fhe spectrogram of signals whose IF
may be considered as a constant. In addition, we Harived the variance expression for
the spectrogram of a linear FM signal. This sigisaconsidered in the cases of other
commonly used TFDs, such as Born-Jordan and Chbiawis distributions. It has been
shown that the reduced interference distributiontperform the Wigner distribution, but
only in the case when the IF is constant or itsati@ns are small. For highly nonstationary
signals the Wigner distribution can produce betsults.

The paper is organized as follows. After thisadtrction the IF estimator is defined and
the problem is described. In Section Il the anialyd the estimation error is performed. In
Section IV the variance of the estimation errothie cases of commonly used quadratic
TFDs are represented. The obtained results areketiecumerically and statistically in
Section V.

2. BACKGROUND THEORY

Consider discrete-time observations,

x(nT) = f(nT)+e(nT), f(t) = A(t)exp(j¢)), )
wheren is an integerT is a sampling intervalg(nT) is a white noise, and\(t) is a slow
varying amplitude of the analyzed signal. By defam, [5], [18], [20], [29], the IF is a first
derivative of the signal phasey(t) = ¢'(t) = dg(t)/dt. Assume thatw(t) is an arbitrary

smooth differentiable function of time with boundeeérivatives |(o(’) ®= |cp(r &) t)kE
M, (t), r>1.

General form of the quadratic shift-covariant T&D" discrete-time domain, is defined
by:

Cy(tw;dp) = f §:¢h(mT, n Xt mF nTX + mF 9T &N, (2

N=—00 M=—00
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where ¢,(mT, nT) = (T 2o ( mT h nf h and the time-lag kerndli(t,T) is a symmetric
function in both time and lag axes. Suppose th@tt) has a finite length along time and
lag directions,$(t,1) =0, for [t}>1/2 or [t|>1/2. It means thath,,(mT, nT) has a finite
length along both directions denotedtpyh>0. Note that is used in definition of the CD
in order to localize the estimate.

Let us analyze the CD of the sigifid). Using the fact that the signal has a slow-vagyin
amplitude f({t+mTxnTo,(mMT nJO Alexp[ ¢( + MmE nJib,( MT NT and expa-
nding ¢(t +mT=+ nT) into the Taylor series aroundup to the third order therm), we get:

C (Lw:bp) :|A(t)|2 i gq)h(m'l', ) e—j[2(w—qj(t))nT—2(p(2)(t)anT—A(p( tmT )l (g

N=-—00 M=-00
where A¢(t,mT, nT) is the residue of the phase which may be repredexs:

w (9 s
aot,mt, =3 &0 3 [E](nﬂ?s’k(rﬂ) 11-(-2" @
=3 S k=0

Note that TFDs from CD would have a maximumcat ¢'(t) if (p(s) (t)=0 for s=2.
The IF estimate may be defined as a solution ofdhewing problem, [18], [24], [29]:
@n(t) =argl max £y (t.widn)}, ®)
W,

where Q, ={w 0qdw<m/(2T)} is a basic frequency interval. The estimation rerro
produced at a time-instaftis:
Abop (t) = w(t) = p(t). (6)

3. ANALYSIS OF THE ESTIMATION ERROR

Since the estimate of IEy,(t) is defined by the stationary point @, (t,w;¢,,), the
p,(t) is determined by zero value @iC,(t,w;¢p)/dw. In [12], the linearization of
0C, (t,w;¢p) /0w =0 with respect to the small estimation errdy, (t) , the residual of

the phase deviationfg, noise € and squared noise?, is done. There, the estimation
error (6) is derived in the following general form:

. 1 o
A 1) = t , 7
()= 35,5 O ) )
where:
Ri(0= 3 Xop(mT, ny(ny? &7 0T, ®
RO S Son(mT, nAG(t mT nj( ny @9 OmmT ©)

n=-00 M=—co
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:aCX(t!wv¢h)| by +aCX(tv(*)1¢ h)| 5
G IA N P w g

Qh

82 ’ (10)

0C(t,w;dp) oy % O ”
o 0652 2n=2_wn§i>h(mT, NMe(t+ mT+ nJe-( +# mF np 1)

x(=jnT) g j20MnT '
while [ means that the preceding derivatives are calallatt¢he pointw =¢'(t), €=0,
and Ag¢(t,mT, nT)=0.

In order to get the exact value of the IF estimatariance, the term
0C, (t,0;¢ )/ 0w|yd, will be expressed by using the inner-product fafmTD, [7]:

Ctwdp) = S THu(mT Al K # mT &) (xt T D (12)

Nn=—c0 M=—00

whered,(mT, nT) =dp((m+- n F2,( m h f2). Consequently,

b0 5 = j 5 Y (mT, i T
W 0 n=-co m=—oo (13)

[ f(t+mDe N t+nT) + Y t+ nJe( & m)) elomNT

52}=0,
08

and consequently={Q} =0. Thus, the estimation variance is:

0

We may conclude that for the white nois@T) ,

E{acx(t,w;cbh) 68}=E{acx(t,w;¢h>
0w 0 0w

N _ var{Qn}
var{AQp (t)} = ———— (14)
T g AP R0

where R, (1) is defined in (8). By expanding exponential funatiexp( 2(p(2) t)mT)O

(nT)) into a power serieexp(X)= ;2 xi/i I, we may represeri, (t) as:

o (_1\i (2) 2
Ry = Y 2124 as)
i=0 !
where:
B(k)= 3 Son(mT,n(my(nT. 16)

For a relatively smaIQcp(z) (t) < 1, we can write:

Rn(t) 0 By(0,2) - 262 (1)2 By(2 9. (17)
Note that wherh - 0, T - 0, h/T - «, we have:

12 12
Bn(k,l) - h¥* g = B [ Jo(tr) ' did. (18)
-1/2-1/2
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Now, we will derive expressions for variance, givemgeneral by (14).

The | F estimator variance
In the sequel the nonstationary, complex-valuedteyi@Gaussian noise(nT) with auto-

correlation R (t+ mT, t+ nT)= (t+ mDd( m ), 1(t) =0 will be considered. The sta-
tionary noiseg(nT) is obtained as a special case of the nonstatiaaywith | (t) = og.

Proposition 1: Let &, (t) be a solution of(5). For small estimation error and an FM
signal f (t) = A(t)exp(j¢ ¢)) the IF estimators' variance is:

1 2 ~
—F——— =[2C, (t,Q + 0,G|Px [N, 19
aA(t)|4|Fw|2[ 1 (1.010n, P )+ C (0.0 @4 ) (19)

where C, (0,0,HaJhH) is a quadratic distributior{with the new kerne«abhu = —HLTJhH i)

var{A®y, (1)} =

[n}T"hHD of the predefined signat(t) = f (t)exp[-j (¢'OX +¢(0))] at the origin of time-
frequency plane, and|®,|=| Al . Here, [§n] is a matix with elements

$p(MmT,nT) while ||A_y| is a matrix with elementsA(mn)=n-m for mn=
12,....N (N represents assumed finite limits for jn,fihe operator.C denotes element-
by-element matrix multiplication. Th (t) :”I (t +nT)6m’n|| is a diagonal matrix, with

I(t +nT) being its elements. AlsB, (1,0; |¢hl|2) represents a quadratic distribution of
I(t) with a new kerneld)t11 (mT, n'I‘)|2 , d)m(mT, NT) =¢H(mT nP( nT.

Special case:Linear FM signal f (t) = A(t) exp(jat2/2) corrupted by the stationary,
white, Gaussian noise, produces the variance

N ~ 12
var{Adn (1)} = ——; =——[202W, + C; (0.0, )] (20)
84 AD)]"|Ra(D)]

where

W= X Tlon(mT, nf (n7?. (21)
n=—co M=—00

Proof:
Starting from the properties of the Gaussian neigd) , [22], it may be concluded that,
var{Q} =var {—aCX(g’::;q) h) 068} + var{—ac"(;’::;q) h) 0652 } (22)

First term in (22) is highly signal and noise degent. The second term is signal
independent and time-frequency invariant for theecaf stationary noise, [14]-[18], [30].
In the case of white, complex, Gaussian nda¢eT), [1], [9], [11], [18], [27], [28]-[31],
the second term from (22) can be written in théofeing form:
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ow

Var{acx(t,w:%)
0

582}:4 Y Y X ZonmTaTeh(mTn Tx
My =—00 Ny =—00 [Th =—00 M =—00
Re(t+mT+ ATt mF pY R(t m¥F AT ;T NF  (23)
R (t+rmT+ AT m T a T R(t mT nT+t mT Nk
x(an)(nzT) e_j2(p'(t)(nl_n2)T,
where Rg (t+mT, t+ nTj= Eg( t m)l'sEt + nF is the noiseg(nT) auto-correlation
function.
Special casd.: Fornonstationary, complex, white noise R, (t+ mT, t+ nTj= [ t+

mT)d(m-n, I(t) =0, we get:

Var{acx(t,m:cbh)
0w

682}=4§ > o (mT.nDP (NP
0 N=-00 M=-—00 (24)

x| (t +mT+nT) I°(t+ mT- nT=4 G( JO,|¢h1|2 ):
where ¢M(mT, nT) =¢(MT nJ( nT. Thus, in this case, noise-only dependent part of
variance may be represented as a quadratic distnibwf I(t), with the new kernel
|op, (MT, nT)F .
Special cas@: Forstationary, complex, white noise | (t) = 03, we have:
Var{acx(t,w:q»h)
0w

Note that, ash - 0, T —» 0, andh/T — o, W, is reduced to,
V2 12
W, - TPw=T [ [ |o(tT)Pt?did, (26)
-12-12
whereW depends on the kernélt,t) type only.
The first term from (22) for real and symmetrict@ ¢,(mT, nT) may be represented
as:
var aCX(t!wvd)h)
ow

682}=40§§ > lon (T, 0P (2= dod . (25)
0

N=—00 M=-00

68}: > Y Y SHMTaNFR(mT R Jx
0 My =0 My =00 My =0 My =0
x(ny —my) T(rp— mp) TelOMMIT g (=W T ¢+ T ' 4+ )&  (27)
xR (t+n T+ p N+ (- T (& BT R(+ mTemT],
Applying $p(MT, N =F(nNT MY and Re(t+mT t+nh= (& mJ R( m N
I(t)=0, we get:

Var{acx(t.w;cbh)
0w

62} =2 i i&nh(nﬂ, m Do m 767 m T=2 Q0,a®y) (28)
0 my=—00 Mp=—00
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where C(0,G®y,) is a quadratic distribution (with the new kerné\lh(mlT, mT)=

®p((m +my) T/2,(m— m) T2)) of the predefined signag(t) at the origin of time-

frequency (TF) plane. Note that for the linear Fighal f (t) = A(t) exp(jat2/2), we have

¢(t) = f (t) . The general form of new kernéih(nhT, m 1) is:

FymTmD= S SF(mTaba(mTal & o (Ta T
M=oy =—e» (29)
X1 (4TI R (mp = ) €197,
Special casé: Forstationary, white, complex Gaussian noiseve get:

BT, mN=02 SFn(mT nJoa T AT A o n ;2T (30)

n=-oco
For finite limits this is a matrix multiplicatiorofm,
[@n] = 02l An- w8 <0 A 46 @)

where || Ar_p| is a matrix with element#\(m ) = n- m for m n=12,...,N. Elements of
matrix ||§y,|| are §,(mT, nT). Let us now introduc#@hu = | An=rl-*||® |- Then, because

of symmetry and realness of the ker@gl(mT, nT), (M, T, nNT) =&,(nT m T, and the
asymmetry of matrif A_n| . | Av-m| = || Am- |, we have:

ol --otfo° e

Thus,

Var{acx(t,w;cp h)
0w

Special cas@: Fornonstationary, white, complex, Gaussian noisave have:

n(mT,mT= SFn(mT nJBh( m T AT A D0 2Tkt pT o

o i O EN
where [[1(t)] is described in the Proposition. Substituting @4. and (34), as well as

058} = 2o§cc(o,q—H\TJhH2). (33)

egs.(25) and (33) into eq.(14) proves formulas €r®) (20), respectively.

4. THE SPECIAL CASES OF QUADRATIC TFD’s

The expressions for IF estimator variance in theead any TFD from CD may be obtained
as special cases of the eqs.(19)-(20).
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1. Pseudo Wigner distribution (WD): For this distribution §,(mT, nT) = w,( mJ0
S(m+ ) w(n, Ru() =, we (nT) — THJYZ, ¥(1)T2 d, where wy(nT) s the

real and even window function. Thus, we get:

A 1
AWy (1)} = —————=[WD, (1,0, +2WD tQ , 35
A0} = PP 0 £ 200 A )l @9)

where Whl(nT) =w,(nT(nY and th(n'D = V\ﬁ( nT( nT, while WD, , denotes cross-

Wigner distribution. For the case of stationaryt@liomplex noise,
cg ( og l

Jam)? T 2am® T h®

var{Ady, (1)} = (36)
where W, = ﬁjyzz W4(T)T2(1'/(Jil/jz V\?(T)T2 ct)2 is the constant, dependent on window
w(T) . Its values for some commonly used windows areemted in Table I. Note that for
the rectangular windowv,(nT) and the case of stationary, white, Gaussian neiseget
the well known expressions frojh8]:

N 602 0?2 T
Aoy (1)} = £E_(1+ E y—. 37
var{Aéon (1)} A ( 2|wz) 3 (37)

Conclude thatvar{Ad®, (t)} is not dependent on the phag@t) and its derivations in the

case of analyzed FM signals, ixar{A®,(t)} is constant for all values (1;6(2) (t) in the
case of linear FM signal.

2. Spectrogram (SPEC) Here we havedy(mT, nT) = w,( mT w( nY. In this case the
two parts of variance (22) have the following forms

Var{w 68}:28TFT(1;0, V,) SPEC(0.Q W)+ 2 STRT,0 Ay
0

9w (38)

xSPEG (0,0, W)~ 4 STFT .0 ;) Re[ STETO.Q ny STFTAQ W],

Var{acx(t,w;cph)
ow

552} = 2Re[STFT (t0; v ) STFIT( 0; )= 2 SPEQ ,@ ), (39)
0

where STFT(tw; w;) represents the short-time Fourier transfor®@PEQ tw; W) =
|STFT( tw; V\I,)|2 , whereas theR, (1) , €q.(15)-(16), is:

_h? 2 (=)' (PP (/22 2 2Axzan . (2i+2) w
Rh(t)_jlgo (2|)| |l§0|22=0(|1 ( 1)2[ |2 )M4i+2—i1—iz|jvli1+i2 (40)
and
1/2
MY = [w(t)tdt (41)

-2
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Table I. The coeficient®V,, S, , andC,, for different windoww(t) forms

Windoww(t) | Rectangular Hanning Hamming Triangulgr
W, 12 54.4631 41.6581 34.2857
Sw 12 28.1135 19.7324 19.2
Cw 531107 | 176€107° | 2931103 | 27411073

is ther-th moment of windoww(t) . Substitution of eqs.(38)-(39) into eq.(22) progkic
variance var{Q,} . After that, substitution of the obtained variarared eq.(40) into (14)
gives the IF estimator variance in the case of SPE@mM eq.(38) it can be easily
concluded that thear{A®}, (1)} in the case of SPEC is highly signal dependent.

Linear FM signal f(t) = A(t) exp(jat2/2), corrupted by the stationargor quasi-
stationary I(t +nT) =1(t)), complex, white, Gaussian naisén this case we have
SPEG (0,0, VMl) =0 and STFT (t0; VMZ) = 0. Thus,

. 12
var{—acx“'w""h) as}=2o§ThEﬁ J M(r)rzot]DsPE@(o,a W (42)
ow 0 12
where:
) (%)
SPEG (00, W) =| A} My (43)

while R, (t) is given by eq.(40) with(p(z) (t) =a. Now, the exact IF estimation error
Ady,(t) variance may be easily obtained by replacing 46¥.and (42)-(43) into expre-
ssion (14).

Sincer-th moment of the windoww(t) is very small forr >5, then for relatively
smalla, a<06, var{fA®,(t)} can be closely approximated by the following vsiyple
form (obtained by replacing= 0,1 into (40) and (43)):

2
var{Adn(D) 0—2— g, &Gt (44)
2JA()|S h
where S, =jijjzwz(T)t2d/( MY)2 and
_1f Mo Mg My 45
Cw 4{(M(\)N) +M§’V M(\)N] (45)

are the window w(t) dependent constants, Table |. Note that, due ® kérnel
&, (mT, nT) symmetry, the same values of varian@{A®y(t)} hold for negativea with
a- |al Conclude that in this casgar{Ady(t)} is not constant. It is highly signal

dependent. Aa increasesyar{A®,(t)} increases from the value
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N o? T
var{A®p (1)} D—Sz Sw—, for a=0 (46)
AP T h

that is derived in literature as the spectrogramawae,[17]. Of course, it holds only for
a =0, while for other values od the more general relation (40)-(44) derived irs thaper
holds.

3. Smoothed pseudo WD (SWD) In this case we havd3], [5]: ¢,(mT,nT)=yO

exp- TR /a - (nT)?/B). Fora =B, &,(mT,nT)= w( mT w( nY, wherewy,(mT) =
\Nexp(— (mT)z/(ZO( )) is the Gaussian window. Consequently, the varisexq@ession
may be directly obtained from those in the casespdctrogram, for Gaussian window
W (mT) .

5. NUMERICAL IMPLEMENTATION

Obtained results for variance are checked stalti@and presented in Figa)c). The
following quadratic TFDs are considered:
pseudo WD, with the Hanning window(t) ;

spectrogram;

Born-Jordan (BJD)$,(mT, nT) = z‘n#‘ﬂrec{% ;

Choi-Williams distribution (CWD),
) 1 (O[T 2 —
On(mT, N == 2 expl- (Gt 0 = V2.
The general expression (20) for variance is usetthé numerical analysis. Linear FM
signal f (t) = exp(—j16T|at2 ) corrupted by the stationary noise with variamge= 025 is

analyzed. The values ap(z) (t) =a with aJ[0,] are considered in the case of spectro-
gram, whilea (J[0,05 in the case of other TFDs, when the oversampBnmiecessary. The
signal is considered within the time intervall[-2,2] with the sampling period =1/64.
The symmetric kernelsrh/2< (mT),(nT) < K2, with h=1 width (i.e. 64 samples kernel
width) are used. Note that the results for the CWghly dependent on the parameter
Thus, any comparison is relative. Here we have efdbe parameters according to the
results fron{25].

A very high agreement of the theoretical resuhigck line) and the statistical data (thin
line) can easily be noted from Fig.1. Theoreticalues are produced by the derived
expressions (19)-(20), while the statistical dat @btained by running 128 simulations.
Typical error functions for one realization are egivin Fig.2. Note thatvar{Ady, ()} in

BJD and CWD cases increases (as in the case of S&fCincreases. For smad - 0
they have lower variance than the PWD, while byeasinga they perform worse than the
PWD. These conclusions are expected since the Riibditions significantly reduce no-
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var{A®,(t)}
10'
10°
10"
10° a
0 02 04 06 08 1
a)
10° 10°
var{A®,(t)} var{A®d,(t)}
BID
107 10"

—

PWD PWD
10° 107
cwD

\?0 0.1 0.2 0.3 0.4 0.5 -30 0.1 0.2 0.3 0.4 0.5
b) o
Fig.1. IF variance obtained theoretically (thiakd) and statistically (thin line) for different

normalized values o(p(z) (t) =a; a) SPECp) BID and pseudo Wz) CWD and pseudo

WD. Note thata = 0 corresponds to the pure sinusoid, while valua af the ending
interval point corresponds to the diagonal in tbesidered time-frequency domain.

ise energy located far from th&t axes. For the signals whose ambiguity functios lie
along thed,t axes (as in the case of linear FM signals véith 0) the RID distributions do
not degrade signal representation. On the othed,hfam linear FM signals with larger
values ofa, the RID distributions significantly degrade regmetation of the analyzed
signal. Consequently, in this case it may happanttie TFDs from RID class have worse
performance than the WD. A decrease in variancéh®BJD, fora between 0.3 and 0.4, is
due to its pseudo form. Namely, considering fisitgport of the BJD a significant kernel
values can be truncated since they areBthelomain oscillatory. They can cause variance
oscillations, as well.

6. CONCLUSION

In this paper we have performed IF estimation asiglyased on the general quadratic shift-
covariant class of TFD's. The exact bias and vadasxpressions are derived. It is shown
that the IF estimation variance is closely relagth the non-noisy signal's distribution.
The expressions in the cases of most frequentlg TiE®s are obtained as special cases of
the general analysis. The obtained results areegraumerically and statistically.
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2
Ady(t)

0 05 1 4 05 0 05 1

b) o

Fig.2. The IF estimation error in the cases of PWHzk solid line), CWD (dashed line),
BJD (dotted line), and for the different valuesaoh) a=0, b) a=0.25,c) a=05.
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