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Abstract: This paper presents the algorithm for estimation of inharmonicity of the 
string musical instruments. The second part of this paper presents the results of the 
application of this algorithm in estimation of inharmonicity of the copy of Antonius 
Stradivarious violin built in the transition period from the 19th to the 20th century. The 
analysis was made for two ways of string arousal: a) by using a bow and b) by using 
the piccicato technique. After that inharmonicityof the instrument was analysed in the 
third octave when played by using the pizzicato technique. The results are given in 
tables and graphics. In the end the comparative analysis of results was made.  

1. INTRODUCTION 

The string instruments produce a tone, i.e. they generate an acoustic wave by oscilating 
the string. Oscilation of a string is well explained in physics and acoustics, substantiated by 
a corresponding mechanical and acoustical model and described by adequate equations. 
After the mechanical arousal (the string is put out of balance (or set into vibration) by 
picking, striking or by a fiddle-bow) the string begins to oscillate tending to subside and 
come back into the equilibrium. The string is vibrating with the basic or fundamental 
frequency that depends on the dimensions of the string (length and diameter), the material it 
is made of and the tensile strength. Along with the fundamental frequency, because of the 
cimplex oscilating of the string (appearing of waves on 1/2, 1/4, 1/8, ...of the string length) 
there are acoustic components of the waves on the frequencies that represent the integer 
multipliers of the fundamental frequency. In the techniques these spectral components are 
called charmonics. The theory of music describes the complex structure of the string 
oscilating and the generated tone by means of aliquotes (lat. aliquoties - several times), 
where the aliquotes represent charmonic components of the generated tone. The detailed 
mathematical analysis shows that within one tone there are thanks to the aliquotes all tones 
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included (the aliwuotes of various tomes overlap mutually). Different numbers of the 
present aliquotes and their different relative intensity within the total sounding determine 
the timbre of the sound [1]. Aliquotes are also called partial tones, i.e. the partials. 

The detailed analysis of the oscilation of the string shows that because of the parameters 
of the string and the tensile strength the frequencies of the harmonics are not with the 
integer multiplier, i.e. there is inharmonicity. Inharmonicity of the oscilation of the string 
can be described by the coefficient of inharmonicity. Appearing of inharmonicity inevitably 
leads to the disturbing of aliquocy. Since there is inharmonicity in some instruments, the 
partials can be with frequencies that are: a) integer multipliers of the fundamental frequency 
(harmonics) and b) non-integer multipliers (inharmonics) [2]. A tone produced on an 
inharmonic instrument is not necessarily unpleasant. In [3] there is a statement that softly 
inharmonic tone possesses certain warmth 

The quality of the string musical instruments can be, in addition to other parameters, 
expressed by means of the degree of inharmonicity, too. The strings are trightened by the 
great force so that their elasticity is decreased. The result of this is that the frequecy 
positions of the partials are on the positions of non-integer multipliers of the fundamental 
frequency. Consequently, the instrument with such strings is not harmonical. Along with 
the rigidity of the string, another factor for increasing inharmonicity is the character of the 
acoustic impedance of the resonating plate of the piano or the resonating body of the guitar, 
violine etc [3]. Inharmonics are outstanding at tones with lower frequencies. On higher 
frequencies it is harder to detect inharmonicity. The reason for a good detecting at tones 
with lower frequency lies in the fact that a great number of partials is within the range in 
which man can hear well. At tones with higher frequencies only a few first partials which 
do not express great inharmonicity are found in this region. On the base of the analysis of 
inharmonicity it is possible to make conclusions about the kind of the instrument that 
produces a tone. In [4] an algorithm for the automatic classigication of tones of the pioano 
and the guitar is described. The guitar as well as some other instruments may produce the 
same tone on three different strings. By the analysis of the degree of inharmonicity it is 
possible to determine the played tone, the string and the field where the string was pressed 
[5]. 

This paper presents the results of the analysis of inharmonicity of the violin, actually a 
copy of the Antonius Stradivarius violin, built in the Czeck Republik in the transition 
period from the 19th to the 20th century. The first part of the paper deals with the algorithm 
proposed by the authors of the paper [6]. That algorithm consists of two entities: a) 
estimation of the frequency position of partials and b) estimation of inharmonicity. 
Estimation of the frequency position is based on the peaks of the maximum within the 
spectrum and on the application of PCC of the convulsive kernel. Parameters of this part of 
the algorithm represent a part of the results found by the authors and published in [7] and 
[8]. Out of a great number of published formulas for calculating the inharmonicity the 
authors have applied the formula from [9]. After that the algorithm for estimation of the 
inharmonicity of the double stop published in [12] was described. The second part of the 
paper deals with the analysis of inharmonicity of the violin when the strings are aroused to 
vibrate by: a) afiddle-bow and b) by picking (pizzicato technique). Then the analysis of 
inharmonicity of the double stops from the third octave played on the first and third strings 
by the pizzicato technique was done. The obtained results are compared to the results of 
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inharmonicity of the concert piano Steinway D [10], pianino August Förster (built in the 
Czeck Republic in 1971) [11] and the electric guitar Fender Stratokaster [6]. 

The organisation of the work is as follows. In the section 2 the algorithm for the 
estimation of inharmonicity is presented. In the section 3 the experimental results and the 
comparative analysis are presented. The section 4 represents a conclusion. 

2. INHARMONICITY AT THE STRING MUSICAL INSTRUMENTS 

A. The inharmonicity coefficient of the vibrating string 

The theory of music implies harmonicity in defining the frequency composition of a tone, 
i.e. that the harmonics (partials) are the integer multipliers of the fundamental frequency, 
which mathematically can be presented as: 

 
 1,2,...k   ,0  fkfk , (1) 

 
where f0 is the fundamental frequency, k. the ordinal number of a partial and fk the 
frequency of the partial. The frequency shifting of the partial from the frequency position of 
the harmonic represents the inharmonicity of a tone. Inharmonicity is defined by the 
coefficient of inharmonicity : 

 

 1,2,...k   ,1 2
0  kfkfk   (2) 

 
The coefficient of inharmonicity  depends on the material the string is made of and can 

be calculated on the base of: 
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where Q is Jung’s modul of elasticity of the material the string was made of, d the diameter 
of the string, l the length of the string and F the tension force. 

B. The algorithm for estimation of the partials  

The algorithm for estimation of partials is based on the spectrum analysis of the signal x. 
First of all the the spectrum X is calculated by using of the discrete Fourier transformation. 
After that the position of the maximal spectral component that represents the fundamental 
frequency is determined by the method of spectrum peaking [7]. In order to increase the 
estimation precision the parametric cubic convolution is applied and the fundamental 
frequency f0 is calculated [7, 8]. Estimation of the partials is performed by the algorithm 
shown in Fig.1. That algorithm consists of the following steps: 

 
Input: Spectrum Xb of the frame xb of the signal x, the estimated fundamental frequency 

f0, number of partials NP. 
Outout: partials fP. 
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FOR p=1:NP 
Step 1: peaking of the p-th spectral component 
Step 2: Counting of the p-th partial by using PCC interpolation. 
END FOR p 

 
Start

FOR p=1:NP

f0 b, FrameX

Peak picking

PCC Interpolation

fp

PCC kernel

f f1,..., NP

End  
 

Fig. 1.  Algorithm for estimation of the partials. 

C. Algorithm for estimation of inharmonicity 

The algorithm for estimation of inharmonicity consists of the following steps [6,9]: 
 
Input: The fundamental frequency f0, partials fP, number of partials NP. 
Output: The coefficient of inharmonicity β. 
Step 1: Determination of frequencies of the harmonic components: 
 

 P0 N1,2,...,k   ,  fkfk . (4) 

 
Step 2: Counting of the coefficient of inharmonicity according to the algorithm from [9]: 
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where m and k are partials and . fm and fk the corresponding frequencies of partials. 
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D. Algorithm of estimation of two-tone aliquote distortion  

Two-tones represent simultaneous sounding of two tones. Theory of aliquotes [1] sais 
that spectral content of one tone consists of harmonics which are, in the same time, 
harmonics of other tones. Simultaneous sounding of more tones means spectral overlapping 
of corresponding aliquotes. But, due to existence of some tones inharmonicity, aliquotes get 
untuned. Discrepancy of one tone’s aliquotes related to other tone’s corresponding 
aliquotes, inevitably leads to distortion of reproduced two-tone. 

Algorithm for calculation of aliquote two-sound distortion consists of following steps 
[12]: 

 
Input: aliquotes of two tones f1,k and f2,k where k=1:Np, and Np is the number of aliquotes 

analyzed. 
Output: mean aliquote frequency error (MAFE), mean aliquote cent error (MACE), 

instrument’s inharmonicity P . 

Step 1: detection of tones which form two-tone, 
 

 _2  _1; 1,21,1 tonftonf  , (6) 

 
Step 2: Calculation of mutual aliquotes: 
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where G is number of pairs (k,l) which fulfill condition of equality of aliquotes. 

Step 3: Mean aliquote frequency error: 
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Mean aliquote cent error: 
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where ftocent is transformation function of frequency axis into cent axis with normalization 
to f1,1 frequency. 

Step 4: Inharmonicity calculation of all two-tones in contra octave: 
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where ND is a number of two-tones analyzed. 
Step 5: Calculation of instrument’s inharmonicity as a mean value of some tone’s 

inharmonicity coefficients: 

 
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where S is a continuum of tones analyzed, NS number of continuum S elements, and S 
inharmonicity factor of corresponding tone. 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

Further in the paper the coefficients of inharmonicity of the copy of Antonius 
Stradivarius violin, built in the Czeck Republick (according to the expertise performed in 
Germany in 1993) (Fig. 2). The strings set on it are of the type Dominant Set 135 B, the 
worldwide famous producer Thomastic Infeld Vienna (the string e2: chrome steel, ball end, 
the string a1: synthetic core, aluminium wound, the string d1: synthetic core, silver wound, 
the string g: synthetic core, silver wound). The analysis will imply the estimation of 
inharmonicity of all strings and determination of the mean value that will represent 
inharmonicity of the instrument for two ways of string arousing: a) playing with the fiddle-
bow and b) playing by the pizzicato technique (by picking the string). In addition to that the 
analysis of iharmonicity for the double stops from the third octave with the pizzicato 
technique will be done. The double stops were performed by the simultaneous playing of 
tones on the first and second strings. 

For the purpose of the experiment a base of signals was formed. On the signals the 
algorithms described in section 2 was applied. The parameters of the algorithm are T=0.66s, 
NFFT=10*218, m=6, k=10. 

 

 
 

Fig. 2.  The tested violin. 
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A. Base  

The base consists of all the tones (one octave) on the strings E5 (e2), A4 (a1), D4 (d1) and 
G3 (g). The recording was done with the measuring frequency fs=44.1 kHz and 16 
bits/sample. 

B. Results 

In Fig. 3 and Fig.4 there are diagrams related to the tones obtained by playing with the 
fiddle-bow (Fig. 3 (G3), Fig. 4 (D4)) while in Fig. 5 and Fig. 6 there are time diagrams of 
the tones obtained by the pizzicato technique (Fig. 5 (G3), Fig. 6 (D4)). In every figure a) 
represents the time form of the complete signal, b) the time form of the frame lasting 32 ms, 
c) the difference between the frequencies of harmonic and inharmonic components and d) 
the part of amplitude characteristic to the 10th harmonic. The vertical line denotes the 
position of the harmonic component. In Tab. I there are values of inharmonicity calculated 
by using of the algorithm described in sectionb 2. Fig. 7 shows frequency positions of 
harmonics and inharmonics aliquotes for playing E5-G#5, while Fig 8 shows positions of 
notes. Positions of inharmonic aliquotes are presented at fig. 9.a (aliquote G#7), fig. 9.b 
(aliquote G#8), fig. 9.c (aliquote G#9). Values of semitones inharmonicity coefficients are 
displayed in table II. Frequency and cent values of differences of harmonious and 
inharmonious aliquotas are given in table III. 
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Fig. 3.  Signal of the tone G3 produced by playing with the fiddle-bow. 
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Fig. 4.  Signal of the tone D4 produced by playing with the fiddle-bow.  
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Fig. 5.  Signal of the tone G3 produced by picking the string.. 
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Fig. 6.  Signal of the tone D4 produced by picking the string. 
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Fig. 7.  Frequential position of aliquote components (harmonics and inharmonious) when 

playing (E5,G#5). 
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Fig. 8.  Note position of aliquote components (harmonics and inharmonious) when 
playing (E5,G#5). 
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Fig. 9.  Inharmonious aliquotes position details with E5-G#5: a) G#7, b) G#8, and c) 
G#7. 
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Table I 
Coefficient of inharmonicity of tones of the empty string of the violin. 

Fiddle-bow Pizzicato 
 F0 [Hz] 

 (x10-6)  (x10-4) 
G3 196 6.05 1.31 
D4 293.66 1.38 2.86 
A4 440 3.55 3.82 
E5 659.25 2.06 1.13 

  βsr=3.26 βsr=2.28 
 

Table II 
Coefficient of inharmonicity of tones of the first and second string of the violin. 

Tone S (x10-4) 

E5 1.13 
F5 6.9341 

Fis5 6.8746 
G5 2.5016 

Gis5 6.1697 
A5 18.2261 

P  6.9726 

 
Table III 

Coefficient of inharmonicity of tones of the empty string of the violin. 
Tone MAFE [Hz] MACE [cent] 
E5-F5 413.0169 63.6348 
E5-Fis5 654.7776 101.5170 
E5-G5 93.9050 12.8624 
E5-Gis5 1067.6 150.2831 
E5-A5 276.6344 64.3648 
 MAFE 501.1867 MACE 78.5324 

 

C. Analysis of the results  

On the base of the results shown in Fig. 3 through Fig. 9 and in Tab. I-III it can be 
concluded that: 

a) the coefficient of inharmonicity at the pizzicato technique is 2.28x10-4/3.26x10-6=69.9 
times greater than the one obtained when the string was aroused by playing with the fiddle-
bow, 

b) values of the coefficient of inharmonicity of the sound produced by the fiddle-bow is 
of order 10-6 and can be considered that thare is no inharmonicity 

c) when the pizzicato techhnique is used, inharmonicity of the violin is aproximately in 
the same limits as at the pianino August Förster (1÷2)x10-4 [11] and the electric guitar 
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Stratokaster (0.8÷2.5)x10-4 [6], while it is greater for the size order at the concert piano 
Steinway D (0.6÷0.8)x10-4 [10]. 

d) analysis of the double stops produced by the pizzicato technique on the first and 

second strings showed that the mean inharmonicity error was MAFE 501.1867 Hz, while 

the mean cent error was MACE 78.5324 cent. In comparison to the results of 
inharmonicity of the double stops of the pianino “August Förster” in the counter octave 

( MACE 31.8357 cent) [12] the analysed violin obviously had 2.46 times greater cent 
error. 

The mentioned results point to the fact that at instruments where the sound is produced 
by picking, their inharmonicity is considerable because of irregular oscillating of the string 
after the arousal when it is let to oscillate freely. On the other hand, when aroused by a 
fiddle-bow, it is not oscillating freely and inharmonicity is negligible 

Considering the fact that on the cent scale the distance between any two adjacent 
halftones is 100 cent, it can be concluded that the mean cent error is 78% of a halftone. In 
Fig. 4 it can be seen that considerable aberrations of the inharmonic components in relation 
to the harmonic ones for the analysed double stops occur above 10 Hz. In this range man 
has lesser sensitivity. Reviewing all the presented results it can be said that the analysed 
violin has good acoustic parameters, which is confirmed by its price on the market. 

Further investigations will be directed toward testing of greater number of instruments 
from the group of string instruments (that can be played by picking or by using the fiddle-
bow) and according to the results hopefully a global conclusion will be made 

4. CONCLUSION  

This paper has presented the results of testing the copy of Antonius Stradivarius violin 
built in the Czeck Republic in the transition period from the 19th to the 20th century, 
regarding inharmonicity. The testing was performed for two ways of producing the sound: 
by picking the string (the pizzicato technique) or by playing with a fiddle-bow. The results 
show that inharmonicity is negligible if the fiddle-bow is used (the coefficient of 
inharmonicity of order 10-6), while if it the pizzicato technique is used the coefficient of 
inharmonicityis of order 10-4. The mean value of inharmonicity of the double stops of the 

violin in the second octave is MACE 78.5324 cent, which is 2.46 times higher in 
comparison to inharmonicity of the double sounds of “August Förster” for the double stops 
from the counter octave. Considering the fact that the spectral components of tones from 
the second octave are in higher parts of the spectrum, where man has lesser sensitivity, it 
can be said that inharmonicity of the violin played with the pizzicato technique is of the 
same order of magnitude as of the pianino “August Förster” and the electric guitar “Fender 
Stratokaster”. 
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